1. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. ПОНЯТИЕ О ДВУХПОЛЮСНИКАХ.СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ
При анализе электрических цепей важно знать только параметры и способ соединения друг с другом. Активные элементы будем обозначать в основном кружочками со стрелками внутри, указывающими направление ЭДС (рис. 1); для батареи из гальванических элементов используем обозначение, приведенное на рис. 1б.
В сопротивлениях различных элементов электрических цепей происходит процесс преобразования электрической энергии в теплоту. Такие элементы называются резистивными и обозначаются прямоугольниками (см. рис. 1)
Рис. 1. Примеры схем электрических цепей
Электрические цепи постоянного тока (как и переменного) и, соответственно, их электрические схемы бывают весьма разнообразными. Так, встречаются электрические цепи неразветвленные (рис. 1а и 1б) и разветвленные (рис. 1в), с одним активным элементом (рис. 1а), с двумя (рис.1б) или с большим количеством активных элементов, линейные и нелинейные.
Линейной называется электрическая цепь, параметры которой не зависят от напряжений или токов в цепи. Если параметр хотя бы одного из элементов не остается постоянным при изменении напряжений или токов в цепи, то данный элемент и вся электрическая цепь называются нелинейными.
Часть электрической цепи, имеющая два вывода, с помощью которых она соединяется с другой частью цепи, называется двухполюсником. Различают пассивные и активные двухполюсники.
Пассивные двухполюсники содержат только пассивные элементы, активные – как пассивные, так и активные элементы. Например, справа от точек a и b на рисунке 1в расположена схема пассивного двухполюсника, соединенного с активным двухполюсником, схема которого дана слева от указанных точек. Справа и слева от точек c и d на рисунке 1 расположены схемы двух активных двухполюсников, а между этими точками – пассивный двухполюсник.
Токоведущие части различных элементов электрических цепей изготовляются из проводниковых материалов, которые бывают твердыми, жидкими и газообразными. Основными проводниковыми материалами являются металлы и их сплавы.
Если проводник имеет одну и ту же площадь поперечного сечения по всей длине, то его сопротивление равно:
где l – длина проводника, м;
S – площадь поперечного сечения проводника, м>2;
r – удельное сопротивление материала проводника, Ом/м.
Сопротивление металлических проводников при повышении температуры возрастает. Зависимость сопротивления от температуры выражается следующей формулой:
r>2 = r>1 [1 + α(t>1 – t>2)],
где t>1 и t>2 – начальная и конечная температуры, °С;
r>1 и r>2 – сопротивления при температурах t>1 и t>2, Ом;
α – температурный коэффициент сопротивления, °С>–1.
Сведения об удельных сопротивлениях и температурных коэффициентах проводниковых материалов приводятся в справочной литературе.
2. ИСПОЛЬЗОВАНИЕ ЗАКОНОВ ОМА И КИРХГОФА ПРИ РАСЧЕТЕ И АНАЛИЗЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
Согласно закону Ома в замкнутой неразветвленной электрической цепи (рис. 2):
Рис. 2. Незамкнутая электрическая сеть
А в любом пассивном элементе цепи, например с сопротивлением r>2,
Выражение (1) справедливо при совпадающих направлениях ЭДС Е и тока I, а выражение (2) – при совпадающих направлениях напряжения U и тока I, что и следует учитывать при нанесении на схеме стрелок, указывающих положительные направления в случае использования закона Ома.
Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, соединенных в любой узловой точке электрической цепи, равна нулю, т. е.
Со знаком «+» в уравнение следует включать токи, положительные направления которых обращены к узлу, со знаком «–» – токи, положительные направления которых обращены от узла (можно и наоборот).
Согласно второму закону Кирхгофа в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех резистивных элементах контура, т. е.
Часто в электрических цепях встречаются элементы, между выводами которых имеются те или иные напряжения U (например, напряжение сети, напряжение, снимаемое с делителя напряжения, и т. д.).
Учитывая это, вместо (4) удобнее использовать следующую форму записи второго закона Кирхгофа:
При этом ЭДС, напряжения и токи, положительные направления которых совпадают с направлением обхода контура при составлении уравнения (5), следует включать в уравнение со знаком «+», а те, положительные направления которых не совпадают с направлением обхода контура, со знаком «–» (можно и наоборот).
При составлении уравнений по второму закону Кирхгофа следует включать в них либо ЭДС и падение напряжения во внутренних сопротивлениях активных элементов, либо только их напряжения.
3. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ОДНИМ ИСТОЧНИКОМ ЭНЕРГИИ И ПАССИВНЫМИ ЭЛЕМЕНТАМИ. ПРОСТЕЙШАЯ ЦЕПЬ С ОДНИМ ПРИЕМНИКОМ
Рассмотрим простейшую неразветвленную электрическую цепь (рис. 3). В этой цепи участок amb представляет собой простейший пассивный двухполюсник, являющийся приемником электрической энергии, участок anb – простейший активный двухполюсник, являющийся источником.
Рис. 3. Схема простейшей электрической цепи
Для рассматриваемой электрической цепи по второму закону Кирхгофа можно написать:
Из приведенных уравнений нетрудно получить формулу для определения тока и соотношение между напряжением и ЭДС источника:
где rМ = r>0 + r – эквивалентное сопротивление цепи.
При неизменных значениях ЭДС Е и внутреннего сопротивления r>0 ток в цепи зависит от сопротивления r приемника. Напряжение источника U (равное в данной цепи напряжению приемника) меньше его ЭДС на падение напряжения Ir>0 во внутреннем сопротивлении источника.
Если умножить (1) и (4) на ток, получим соотношения между мощностями:
EI = I>2r>0 + I>2r; (5)
UI = EI – I>2r>0. (6)
Правая часть (5) содержит потери мощности во внутреннем сопротивлении I>2r>0 и мощность, потребляемую приемником I>2r. Произведение EI представляет собой мощность, вырабатываемую источником, т. е. электрическую мощность, преобразуемую им из другого вида мощности; например, если это генератор, – из механической мощности.
Если из вырабатываемой мощности вычесть потери мощности во внутреннем сопротивлении источника I>2r>0, получим мощность UI, отдаваемую источником во внешнюю цепь. Мощность, отдаваемая источником в данной цепи, равна мощности, потребляемой приемником, UI = I>2r. В связи с выражениями (5) и (6), а также схемой на рисунке 3 можно сделать вывод: вырабатываемая источником мощность определяется произведением тока на ЭДС, совпадающую по направлению с током, отдаваемая им мощность – произведением тока на напряжение, направленное внутри источника против тока; мощность, потребляемая приемником, определяется произведением тока на напряжение, совпадающее по направлению с током. Такие взаимные направления тока и ЭДС, а также тока и напряжения характерны для источников и приемников и в других электрических цепях. Учитывая это, выражения мощностей, вырабатываемых и отдаваемых источниками, а также потребляемых приемниками, могут быть записаны следующим образом: