Дарьяна Рогова - Гайд по математике, на тему: «Степень и её свойства»

Гайд по математике, на тему: «Степень и её свойства»
Название: Гайд по математике, на тему: «Степень и её свойства»
Автор:
Жанр: Математика
Серии: Нет данных
ISBN: Нет данных
Год: 2023
О чем книга "Гайд по математике, на тему: «Степень и её свойства»"

В этом гайде представлено информационное объяснение темы по Алгебре – «Степень и её свойства». Разборы заданий по степени, как применять свойства на практике, что нужно знать, чтобы разбираться в этой теме. Разбор заданий от самых простых (7-го класса) до самых сложных (9-ого класса).

Бесплатно читать онлайн Гайд по математике, на тему: «Степень и её свойства»


Немного об авторе

Меня зовут Дарьяна. Репетиторством по математике занимаюсь довольно давно, с 2011 года. Математика всегда меня привлекала, как предмет, в своём деле я помогаю детям\ученикам долгое время, и всегда есть хороший результат. Каждый ребенок, если у него есть желание понять материал – может научиться решать различные задания по математике, каждый может освоить этот предмет, в нём нет ничего сложного, если разобраться в любой теме. Результаты моей работы впечатляют, спокойно нахожу общий язык с учеником и индивидуально подхожу к любому из них. Даже, казалось бы, самые безнадёжные чувствуют себя увереннее на уроках по математике после занятий со мной.

Этот гайд я написала специально для того, чтобы поделиться своими знаниями, чтобы Вы, дорогой читатель, смогли разобраться в этой теме, понять материал и научились сами применять на практике полученные знания.

Вы можете связаться со мной, записаться на консультацию или занятие онлайн, задать интересующие вопросы и сможете лучше разобраться в предмете с моей помощью. Можете написать мне на почту: [email protected].


Начнём изучение темы «Степени и её свойства» – со свойств степеней.

Чтобы понять, как правильно решать выражения с возведением в степень и с действиями с ней, достаточно знать основные свойства степени.




1. Любое число в нулевой степени равно единице.

2. Любое число в первой степени – равно числу.

3. Если есть одинаковое основание, то показатели степени при умножении – складываются.

4. Если есть одинаковое основание, то показатели степени при делении – вычитаются.

5. Если основание в степени и ещё в степени, то показатели степени в таком положении перемножаются.

6. Если же одно основание отличается от другого основания, но у них одинаковая степень, то степень можно вынести за скобку, а основания перемножить.

7. Когда основание в степени и ещё под корнем, то показатель степени делится на степень корня (т.е., если корень квадратный, то делим на 2, если корень кубический, то делим на 3 и т.д.).

8. Если основание находится в отрицательной степени, то основание следует записать в знаменателе, а показатель степени становится положительным.

9. Если же дробь находится в отрицательной степени, то числитель и знаменатель меняются местами и показатель степени становится положительным.

А теперь разберёмся в применении степеней на практике. Подборка заданий 1.




Пояснение: А) Основание одинаковое, соответственно можно сделать действия со степенями, между «а» умножение, значит степени складываются.

Б) Основание одинаковое, между ними деления, значит, применив 4 свойство степени можно вычесть степени.

В) При таком положении показатели степени перемножаются.

Г) Если произведение возведено в общую степень, значит, нужно каждое число в произведении возвести в степень. То есть число четыре возводим в третью степень, это получится 64, и буква t в третьей степени.

Д) В подобной дроби делаются аналогичные действия, что было под буквой Г – возводится каждое число в степень. 2⁴ = 16, и буква d в четвёртой степени.

Е) При таком положении оснований и степеней – степени вычитаются, получается отрицательная степень, соответственно основание спускается в знаменатель, и степень становится положительной.

Перейдём к разбору решений более усложнённых примеров. Подборка заданий 2.



Пояснение: А) Сначала определимся со знаком. При умножении (-) * (-) = (+). Поэтому знак будет плюс. 5 и 25 можно сократить на 5, вверху 1, внизу осталось 5. И можно сделать действия с одинаковыми основаниями, при умножении степени складываются. Получается одна пятая, которую в дальнейшем можно представить в виде десятичной дроби.

Б) Определив знак (-) * (+) = (-), можно после знака равно ставить знак минус. 2,5 умножаем на 2, получаем 5 целых. И складываем показатели степени одинаковых оснований.1

В) Определяем знак: (-) * (+) = (-), поэтому после знака равно ставим знак минус. Числа не сокращаются, поэтому можно оставить дробью. Так как есть черта дроби, то показатели степени с одинаковыми основаниями вычитаются. Если поделить 16 на 7 в столбик, то можно выяснить, что число нацело не делится, поэтому можно выделить целую часть. Если 16 разделить на 7, то можно взять по 2 целых (2*7=14). Если из 16 вычесть 14, то получится 2, соответственно получается данный ответ на рисунке.

Г) Так как здесь подобное положение скобок, то можно целую часть с дробью перевести в неправильную дробь, и после возвести в квадрат. Разберёмся со знаком, если дробь умножить на себя два раза, то получится знак плюс.2 Дробь возводим в степень, соответственно числитель и знаменатель нужно возвести в квадрат степени. Так получилась последующая дробь, после чего можно выразить целую часть. Что касаемо икса и игрека, то при подобном положении скобок нужно перемножить степени.

В подобном задании нужно привести к общему основанию, чтобы сделать действия со степенями, здесь немного усложняется тем, что вместо букв даны числа. Подборка заданий 3.

Пояснение:

А) Сначала разложим число 25 на множители 5*5 = 5², и ещё в пятой степени. Далее видим число 125, чтобы выяснить какое число и в какой степени даёт его, то можно заглянуть в таблицу степеней. На этой таблице я пометила – какое число и в какой степени даёт 125. То есть это будет 5³.

Далее разбираем всё по свойству степени, при положении скобок – степени перемножаются, при умножении оснований – степени складываются. В конце, при делении – степени вычитаются.

Б) В этом примере следует разложить число 24 на множители (3*8), так как число 24 изначально в пятой степени, то и после раскрытия скобок получится, что каждое число будет в пятой степени. Число 8 можно привести к общему основанию, воспользовавшись таблицей степеней. Получается, что число 8 раскладывается, как 2³, а так как у нас степень ещё есть, то получится таким образом: (2³) ⁵. В таком положении степени перемножаются. И теперь можно сделать действия со степенями с одинаковыми основаниями.

Подборка заданий 4.


Пояснение: В этом уравнении таким же образом в числители степени складываются, а затем вычитаются. Поэтому получается, что х=6.





Пояснение:

А) При таком положении скобок в числители степени перемножаем, число 36 представляем в виде числа в степени (6²), а затем в числители степени складываем, а далее вычитаем. Получается ответ 6 в первой степени.

Б) Здесь аналогично, как и в примере под буквой А. В числителе степени перемножаем, в знаменателе число 25 представляем в виде одинакового основания со степенью (5²), в знаменателе степени складываем, а после – вычитаем. Получается, что в числителе будет отрицательная степень, поэтому число 5 идёт в знаменатель и степень становится положительной. Далее из дроби можно получить десятичную дробь, и она станет окончательным ответом.


С этой книгой читают
Настоящее учебно-методическое издание предназначено для студентов, обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), образовательная программа «Информационные технологии и математика». Учебно-методические рекомендации являются частью учебно-методического комплекса по дисциплине Математический анализ.Пособие поможет и преподавателям в организации практических занятий и самостоятельной работы
В интернете можно найти решения почти всех задач, встречавшихся на ЕГЭ, но, как правило, они излагаются недостаточно детально. В предлагаемом пособии подробно обсуждаются решения задач повышенной сложности: задач с параметром и нестандартных задач из сборников ЕГЭ 2019, 2020. Математика под редакцией И. В. Ященко.Пособие предназначено для абитуриентов, но может быть полезным и для учителей математики.
В данной исследовательской работе исследуется применение формулы QVM (Quantum Virtual Machines) в оптимизации производительности компьютерных систем. Рассматривается роль каждого параметра формулы и их влияние на производительность. Приводятся примеры использования формулы для оптимизации задач, таких как кластерный анализ данных и планирование. Представлены рекомендации по улучшению и дальнейшим исследованиям в этой области.
Формула используется для расчета уникального значения M, которое отражает важные свойства квантовых систем. Эта формула может быть применена для создания алгоритмов оптимизации, машинного обучения и симуляции квантовых систем. Результаты расчета формулы могут использоваться для оценки производительности систем, разработки новых технологий и оптимизации свойств квантовых систем.
«Антиглобалист»: рассказ о молодых ребятах из Украины, каждый из которых живет своей жизнью и своими целями, для кого-то стоит во главе карьера, власть, попытка выжить в стремительной борьбе за кусок материальных благ. А для кого-то возможность удержать и не растерять извечные духовные человеческие ценности, которые актуальны в любую эпоху, и тем более во время не только экономического, но и духовного кризиса. Герои книги олицетворяют противостоя
Ты живешь своей обычной жизнью. У тебя все складывается ровно так, как хочет того твоя судьба, окружающие тебя люди, но не так, как хочешь ты. Кого ты хочешь обмануть своей резиновой улыбкой?Я же знаю, что в погребе твоей души в пыли задыхается твоя сильная личность, твой персональный сильный зверь, которого ты боишься вытащить наружу.Эта книга – твой будильник. Ты откроешь глаза и поймешь, что так жить больше нельзя. Что лгать самому себе уже не
Королева вернулась! Она снова на своём месте. И вроде бы всё должно наладиться, но что же теперь ждёт тех, кто осмелился посадить на трон рабыню? Ведь Эриол всегда была известна своей мстительностью, так как же она поступит с теми, кто организовал этот подлог? Сможет ли наказать того единственного, кого когда-то любила? Смирятся ли с возвращением Эриол её враги, уже начавшие делить между собой Карилию? И, главное, чем всё это закончится для стран
Эриол — правительница Карильского королевства. Она заняла трон всего в семнадцать лет, долгие годы крепко держала бразды правления страной в своих руках и по праву заслужила звание Великой Королевы. Но жизнь порой непредсказуема, и врагов короны оказалось слишком много... ...Одной тёмной ночью королева пропала. Ходили слухи, что её убили ударом ножа в сердце. И вот спустя год после своего исчезновения её величество вдруг объявилась в собств