«Пилот не обязан быть инженером…» (вместо предисловия)
Пилот не обязан быть инженером; более того, иногда сугубое погружение в тему способно помешать пилоту выдавливать из своего орудия производства все соки. Излишняя привязанность, перерастающая в любовь, прервала гоночную карьеру таких гениев инженерной автоспортивной мысли, как Энцо Феррари, Колин Чепмен, Эдриан Ньюи. Наверное, оно и к лучшему. По крайней мере, ретроспективный взгляд на их биографию дает точный и однозначный ответ: эти люди нашли свое призвание! Лично для меня – как тренера и тест-пилота автодрома ADM Raceway, а также автора учебников по автомобильному спорту – в одном ряду с вышеупомянутыми легендарными личностями стоит и Кэрролл Смит – американский пилот, инженер и, безусловно, талантливый писатель, сумевший грамотно, доступно, искрометно, временами с юмором, а иногда с неприкрытым сарказмом, отобразить в своих произведениях гоночный автомобиль, каким он был во второй половине 20 столетия. Впрочем, во многом он таким остается и сегодня. Автор этой книги, основанной на литературе Кэрролла Смита, – я настоятельно рекомендую всем, кто искренне болеет автоспортом, такие учебники американского писателя, как Prepare to Win, Tune to Win и Drive to Win. Естественно, в оригинале! – Зачем?
…Пилот, конечно же, не обязан быть инженером. Однако, если его желание быть быстрым – искреннее и не дающее покоя (а не возникающее пару-тройку раз в полугодие – от покатушки до покатушки), то он обязан общаться со своим спорткаром: знать его, слышать, понимать и на том выстраивать свой пилотаж. Тогда и машина ответит ему взаимностью. А вот из гармоничного баланса грамотно построенного автомобиля и до мозга костей понимающего свой инструмент пилота – и рождаются в итоге победы. «Начальная геометрия: стопами Кэрролла Смита. Повесть о балансе. Книга 2» не станет откровением для гоночных инженеров. Скажу больше: она не для них и создана. Эта книга, равно как и «Колесо Жизни. Повесть о балансе. Книга 1», написана тренером-пилотом – для пилотов. Здесь вы не найдете никаких трехэтажных формул и выносящих мозг своей точной скрупулезностью чертежей. Они, безусловно, есть в природе! Но это тема другой – научной – литературы. А мы сегодня не об этом. – Так о чем же?
…Пилот, очевидно, не обязан быть инженером. Но даже самый гениальный пилот (например, Айртон Сенна) обязан был рассказывать о том, что именно его не устраивает в настройке болида. Быстрый тандем требует слаженности, спайки. Мы все, кто так или иначе пилотирует спортивный автомобиль, едем по-разному. У каждого из нас есть свои предпочтения по работе тормозной системы, или коробки передач, или подвески, или рулевого управления; кому-то комфортнее болид с избыточной поворачиваемостью, а кому-то с недостаточной. И мы, пилоты, должны уметь это почувствовать, объяснить инженеру; желательно, чтобы при этом мы понимали, что конкретно нас не устраивает и чего мы в итоге хотим получить; и еще желательно, чтобы все излагалось понятным инженеру-механику языком.
…Пилот не обязан быть инженером, – собственно, об этом и речь в книгах «Повести о балансе».
Часть 1. Геометрия подвески
В рамках данной области изучения, чем больше возможных вариаций, тем более загадочной может стать эта область. Поскольку возможности вариаций, заложенные в геометрии подвески гоночного автомобиля, практически бесконечны, из этого следует, что возникающие в результате загадочность и путаница также должны приближаться к бесконечности – и так оно и есть. Кэрролл Смит был вовсе не уверен, что нам удастся в какой-либо степени уменьшить путаницу, но мы хотя бы попытаемся!
Геометрия любой системы подвески колеса определяет линейные и угловые траектории, по которым будут двигаться колесо и шина при переходе из своего статического состояния, – либо из-за воздействия неровностей дороги на неподрессоренную массу, либо из-за перемещения подрессоренной массы в ответ на трансформацию веса, вызванную ускорениями в различных плоскостях. Форма этих траекторий движения колес будет зависеть от относительной длины и наклона частей подвески, в то время как величина деформаций будет зависеть от абсолютной длины частей, задействованных масс, величины трансформации веса, а также от настроек и расположения пружин подвески и стабилизаторов поперечной устойчивости. В этой главе мы рассмотрим как форму, так и амплитуду траекторий движения колес, но только с геометрической точки зрения. Пружины и стабилизаторы поперечной устойчивости мы оставим для отдельной главы.
Проектирование геометрии подвески состоит в том, чтобы сначала выбрать тип используемой подвески, а затем выбрать расположение точек поворота, абсолютную и относительную длины частей и углов наклона, а также размеры колесной базы и колеи, что приведет к наиболее приемлемому сочетанию расположения центров крена и траекторий движения колес в соответствии с условиями эксплуатации. Это также включает в себя абсолютную уверенность в том, что все задействованные компоненты и точки их крепления обладают достаточной жесткостью и прочностью, чтобы свести к минимуму возможные дефекты и избежать катастрофы.
Исторический экскурс
Ранние гоночные автомобили конструировались с неразрезными осями. Удивительно, но за некоторыми заметными, но не очень удачными исключениями, такая ситуация сохранялась до конца 1920-х – начала 1930-х годов. Очень рано стало очевидно, что неразрезная ось имеет врожденные недостатки, которые накладывают весьма серьезные ограничения на эксплуатационные характеристики автомобиля. Главным из них был тот простой факт, что при наличии пары колес, соединенных одной осью, любая сила, которая действует на одно колесо, обязательно действует и на другое. Это совсем плохо, особенно если дорожное покрытие далеко не идеально. Неразрезная ось, кроме того, очень тяжелая (полностью неподрессоренная) и требует много места, если мы хотим обеспечить разумный вертикальный ход колес. А также вызывает большие точечные нагрузки на шасси и имеет высокий центр крена – вот почему ранние гоночные автомобили не кренились так сильно. Несмотря на то что неразрезной мост конструктивно прост, легко монтируется и выдерживает незначительный наклон, – его трудно уберечь от перекоса при наезде одним колесом на поребрик, например, или при крене подрессоренной массы. С точки зрения передних – рулевых – колес, неразрезной мост вынуждал мельчить детали системы, что приводило к повышенному износу, гироскопической прецессии колес и многим другим проблемам, которые практически исчезли из нашего словаря.
Поскольку проблемы, связанные с неразрезной осью, более заметны в передней части автомобиля, следующим шагом стала независимая передняя подвеска с продольными рычагами. Она была дешевой, простой и, главное, независимой – перемещения одного колеса не передавались на другое. Такая схема подвески поддерживала постоянный угол развала колес при вертикальном перемещении и сохраняла неизменной колею. Но были и серьезные недостатки: развал колес оставался равен крену шасси (в неправильном направлении), а удельные нагрузки в зонах шкворней и в шарнирных соединениях были очень высоки, что вело к преждевременному износу шарниров и деформации соединений, если они не были монументально прочными. Также трудно было избежать деформации в вертикальной плоскости – опять же, за исключением использования массивных компонентов. Однако ничего и никого реально не смущало ровно до того момента, пока на сцене не появилась широкопрофильная шина. В этот момент даже Porsche, который десятилетиями придерживался подвески на продольных рычагах, в спешке избавился от нее.