По современным представлениям физиков наша Вселенная возникла в результате Большого Взрыва. Общепринято считать, что внезапно из ничего возник огненный шар с температурой 10 >32 K. В течение 10>—43 – 10>—35 секунды после Взрыва наступила планковская эпоха, при которой не действовал ни один из известных физических законов. Когда возраст Вселенной достиг 10>—35 секунд, в ней произошел экспоненциальный (инфляционный) взрыв, в результате которого её первоначальный размер увеличился 10>50 раз. В этот период во Вселенной доминировали колоссальные значения температуры и плотности энергии излучения. После окончания этого периода в течение 10>—35—10>—4 секунды, в результате значительного снижения температуры начался период образования кварков и антикварков (кварко-глюонной плазмы). По истечение времени с 10>—4 по 10>0 секунды, температура во Вселенной упала до значений, позволяющей кваркам и антикваркам объединятся в протоны и антипртоны. Дальнейшее снижение температуры и плотности излучения энергии, произошедшее в течение 3-х минут сделало возможным действие фундаментальных физических сил и образование элементарных частиц (электронов и позитронов) в современной форме, а затем ядер водорода, гелия, лития и других легких атомов химических элементов. Через 3 10>5 лет, когда Вселенная, последовательно расширяясь, охладилась до температуры 3000>0 К, электроны начали соединяться с протонами и ядрами гелия, и образовывать атомы водорода и гелия. В результате материя во Вселенной стала прозрачной для прохождения световых волн, а через миллионы последующих лет космическая материя локализовалась (скучилась) и уплотнилась до такого состояния, что появились звезды и галактики. Таков общепризнанный в настоящее время сценарий рождения и развития Вселенной, хотя его окончательный вариант не разработан ещё до сих пор. В нем осталось ещё много вопросов, на которые ведущие физики теоретики пытаются ответить, используя современные технологии при наблюдении за астрофизическими объектами.
Одним из самых дискуссионных вопросов в этом сценарии является образование ядер химических элементов всей периодической системы Менделеева, за исключением ядер водорода и гелия, которые в основном образовались в первые минуты жизни Вселенной. Согласно доктрине современной физической науки общепринято считать, что источником образлвания ядер большинства химических элементов является последовательность протекания термоядерных реакций, Первым элементом нуклеосинтеза в ядерных топках звезд является гелий. Его ядра образуются в центральной части звезды при достижении температуры 10>7 С. Происходит это в результате слияния четырех протонов с выделением 12,85 Мэ
Затем, при достижении температуры 10>8 С ядра гелия набирают скорость, позволяющую им сблизиться на расстояние достаточное для слияния их в ядра более тяжелых химических элементов (углерод, кислород, неон и др.). Так называемые четные элементы, у которых заряд ядра сразу повышается на две единицы. Нечетные элементы образуются другим способом. В начале ядро захватывает нейтрон, в результате его масса увеличивается на единицу, а заряд остается прежним. При этом, если образовавшееся ядро окажется не стабильным, то произойдет бета-распад, нейтрон превратится в протон. Заряд у такого ядра вырастет на единицу и оно превратится в ядро следующего более тяжелого элемента.
Ядра тяжелее железа в термоядерных реакциях не образуются. Механизм их образования другой. Ученые предполагают, что они образуются в двух видах ядерных реакциях, сопровождающихся захватом одного или нескольких нейтронов. В первом случае ядерная реакция осуществляется медленно движущимися нейтронами. Такой процесс называется s-процессом (медленный процесс). Таким способом синтезируются тяжелые элементы после железа вплоть до золота. Во втором случае ядерные реакции происходят в результате быстрого захвата нейтронов, так называемого – r-процесса. Его суть заключается в захвате ядром не одного, а нескольких нейтронов сразу. Тогда при бета-распаде синтезируются ядра тяжелых и самых тяжелых элементов от золота вплоть до тория и урана. Но, где такие процессы могут идти, у физиков теоретиков на этот счет нет единого мнения. Для поддержания этого процесса в недрах звезды необходимо наличие большого количества свободных нейтронов. Оно может проявиться при вспышке сверхновой звезды в конце эволюции массивной звезды, когда электроны сливаются с протонами и в результате образуется большое количество свободных нейтронов. Кроме того, также много свободных нейтронов получается при слиянии двух нейтронных звезд.