Анатолий Овчинников - Рассуждения об основах математики

Рассуждения об основах математики
Название: Рассуждения об основах математики
Автор:
Жанр: Научно-популярная литература
Серии: Нет данных
ISBN: Нет данных
Год: 2021
О чем книга "Рассуждения об основах математики"

В этой книге опровергаются некоторые устойчивые заблуждения и мифы, касающиеся оснований математики. Изложение ведется с позиций диалектического материализма. Многие из нас интуитивно понимают, что с неевклидовыми геометриями и теорией относительности "что-то не так". В книге показано, что это "что-то не так" возникает из-за той идеалистической позиции, которую занимают математики и физики-теоретики при изучении законов природы. Книга есть логическое продолжение рассуждений, начало которым было положено в уже изданной книге: Овчинников А. Н. Рассуждения об основах физики. Москва; ЛитРес: Самиздат, 2020.

Бесплатно читать онлайн Рассуждения об основах математики


1. Введение

Эта книга есть логическое продолжение рассуждений о связи математики и опыта. Начало этим рассуждениям было положено в недавно вышедшей в свет книге [1], в которой сейчас для нас наиболее важны пятая и шестая её главы. Затем появились ещё две важные по этой теме статьи [2], [3]. Все изложенное в этой книге и в этих статьях, мы будем считать известным, а потому настоятельно рекомендуется сначала ознакомиться с их содержанием. Сейчас становится целесообразным объединить всё, имеющее отношение к основам математики в одну книгу, что здесь и сделано. Заметим, что основания физики и основания математики на деле не различаются; в их основе лежат экспериментальные факты. Но физика использует математический аппарат, а поэтому различие между физикой и математикой (в их основаниях) становится практически неразличимым. В такой ситуации трудно различить: где начинается (и кончается) физика, а где начинается математика, и наоборот. Вот почему мы полагаем, что и книгу [1] и данную здесь книгу нужно рассматривать как единое целое.

Мы продолжаем здесь опровергать некоторые устойчивые заблуждения и мифы, имеющие давнее происхождение. Многие из нас интуитивно понимают, что с неевклидовыми геометриями и теорией относительности «что-то не ладно». В этой книге мы покажем, что это «что-то не ладно» возникает из-за той идеалистической позиции, которую занимают математики и физики-теоретики при изучении законов природы. Мы здесь будем говорить лишь о традиционной геометрии и математике, то есть о тех, с которых обычно начинается их изучение в средней школе. В частности, в них имеются понятия геометрической фигуры, числа, имеются знаки: <, =, >. Имеются также простейшие операции: сложение, умножение, вычитание, деление. Однако читатель, ознакомившись с изложенным здесь, легко увидит, что все сказанное в книге будет справедливо и для других разделов математики.

Кратко напомним самое важное для нас здесь из [1].

а) геометрия начинается с экспериментальных фактов, называемых иначе построениями

б) определения и аксиомы геометрии и математики есть рациональное осмысление экспериментальных фактов (построений)

в) критерием существования геометрической фигуры в реальном пространстве является аксиома существования

г) в реальном пространстве существует только одна геометрия это – евклидова геометрия.

Добавим ещё здесь, что в книге часто будут напоминаться банальные истины, но они будут чередоваться с тем, о чем мы ещё не думали. Но так бывает всегда, когда речь заходит об основах науки. Банальные истины начинают забываться в процессе длительного обучения, а потому их приходится напоминать.

Основная часть

1. Рациональное и иррациональное осмысление экспериментальных фактов

Мы не будем здесь давать строгое определение понятию рационального осмысления экспериментальных фактов (оно вряд ли возможно). Мы ограничимся здесь лишь некоторыми примерами из науки рационального и нерационального (иррационального) осмысления экспериментальных фактов.

Пример 1. Геометрия. Геометр строит фигуры: точки, прямые, окружности и так далее. Существование всех этих реальных фигур есть экспериментальный факт. Как осмысливает эти экспериментальные факты геометр? Он говорит: «Я допущу, что в реальном пространстве существуют не только те реальные фигуры, которые я построил, но и идеальные фигуры, которые я буду строить, имея также для этого идеальные инструменты. А это значит, что могут быть построены и существуют идеальные фигуры (идеальная точка, идеальная прямая, идеальная окружность и так далее)». Это – рациональное осмысление экспериментальных фактов. В самом деле. Существование идеальных фигур в реальном пространстве нисколько не меняет ни свойств самого пространства, ни свойств самих реальных фигур. Реальные и идеальные фигуры существуют в одном (общем для них) реальном пространстве, нисколько не мешая друг другу. А вот изучать свойства фигур целесообразно начинать со свойств идеальных фигур. После того, как это будет сделано, достаточно сравнить свойства реальных фигур со свойствами идеальных фигур. И что же мы увидим? Мы увидим, что свойства реальных фигур тем меньше отличаются от свойств идеальных фигур, чем точнее построена эта реальная фигура. И отличие свойств реальной фигуры от идеальной всегда может быть выражено с известной степенью точности. Во всех этих рассуждениях особо следует подчеркнуть важность материалистического подхода к изучению законов реального пространства. Началом всему являются экспериментальные факты. Не было бы этих фактов, нечего было бы и осмысливать.

Пример 2. Физика. Кинематика точки. То, что тела могут двигаться и при движении оставляют после себя те места, которые они уже покинули, это – экспериментальный факт. Как осмысливает этот экспериментальный факт физик? Он здесь подражает геометру. Он говорит: «Я допущу, что в реальном пространстве существуют материальные точки (такие же как у геометра, но наделенные массой) и траектории этих точек такие же как у геометра (идеальные линии). И посмотрю, что из этого получится». Это – рациональное осмысление экспериментальных фактов. В самом деле. Существование материальных точек и их идеальных траекторий в реальном пространстве нисколько не изменит законов природы. И точно так же, как в геометрии, реальные тела с их реальными траекториями нисколько не мешают существовать материальным точкам с их идеальными траекториями. А вот изучать свойства движущихся тел целесообразно начинать с кинематики материальной точки. Потому, что это гораздо проще. Аналогия между осмыслением экспериментальных фактов у геометра и физика здесь усматривается предельно ясно.

Пример 3. Физика. Идеальный газ. То, что газ есть собрание хаотично двигающихся молекул (газа) является экспериментальным фактом. Как осмысливает этот экспериментальный факт физик? Он говорит: «Я допущу, что существует идеальный газ, в котором молекулы заменяются материальными точками. Эти материальные точки замечают друг друга только при столкновениях, и при таких столкновениях ведут себя, как упругие шарики». Это – рациональное осмысление экспериментального факта. В самом деле. То, что в одном сосуде – реальный газ, а в другом сосуде – идеальный газ вовсе не влияет на законы природы. Законы природы будут действовать одинаково на оба этих газа. А вот изучать свойства газа целесообразно начинать со свойств идеального газа. Затем свойства реального газа всегда можно сравнить со свойствами идеального газа, и объяснить по каким причинам они различаются. Здесь также видна аналогия между осмыслением экспериментальных фактов геометром и физиком.


С этой книгой читают
До сих пор в наших умах бытует мнение, что в теории относительности, как "весьма солидной научной теории", возможны измерения. Но это не так. Эта книга опровергает миф о возможности измерений в теории относительности. Здесь показано, что объективные, однозначные, непротиворечивые измерения в физико-математических науках возможны лишь при наличии абсолютных единиц измерения и абсолютно неподвижной системы координат. В противном случае измерение, к
Книга посвящена критике иллюзорных физических теорий: теории относительности и теории расширения Вселенной. Показано, что эти теории отрицательно влияют на образование и мировоззрение современного человека. В книге критикуются идеалистические взгляды на основания физики, астрономии, математики. Часть книги посвящена проблемам измерения времени, другая её часть – анализу негативного влияния теорий относительности и расширения Вселенной на основные
Цель автора – через стихи осмыслить основной Закон. Возможно, и читатель еще раз возьмет в руки первоисточник и задумается о главном…
Ксилена Гарав не без оснований считала себя успешной женщиной: сбежав от мрачного прошлого, она открыла свой магазинчик, нашла применение редкому дару и скоро собиралась выйти замуж за талантливого художника.Все развалилось в один миг.Она поступила, как обычно: просто указала на виновного. И вот дара уже нет, сбежавший из-под стражи опасный тип явно жаждет мести, вокруг магазина и самой Ксилены клубятся мрачные тайны, и от жениха помощи мало. Но
Эта книга – мой личный шедевр. Это действительно то, во что я вложил всю свою душу. Я не жалел ради нее ни времени, ни сил, ни чего либо другого – и вот, вы теперь можете ее прочесть. В ней есть как и сказки, так и рассказы и стихи. И все они тоже разные – какими-то могут насладиться как взрослые, так и дети, а какие-то лучше детям не показывать. Вот такая "Сказка для взрослых"…
Simon and Mary love each other. He waits for hours at the window for her return from work. She monitors his health and diet. Their literary tastes coincide, and together they spend long evenings reading books. Their idlily is broken by a certain character named Vergenius who is offering tickets to the musical and throwing French words. Simon is responsible for his happiness and does not want to share the attention of his queen. In the name of lov