Владимир Ивановский - Технический углерод. Процессы и аппараты. Дополнительные материалы

Технический углерод. Процессы и аппараты. Дополнительные материалы
Название: Технический углерод. Процессы и аппараты. Дополнительные материалы
Автор:
Жанр: Процессы и аппараты химической технологии
Серии: Нет данных
ISBN: Нет данных
Год: 2018
О чем книга "Технический углерод. Процессы и аппараты. Дополнительные материалы"

В книге рассмотрены наиболее актуальные для производителей технического углерода процессы: применение циркониевых огнеупоров в реакторах для получения техуглерода; обеспечение высокотемпературного нагрева воздуха,подаваемого в реакторы, и использование отходящих газов, образующихся при производстве техуглерода.

Бесплатно читать онлайн Технический углерод. Процессы и аппараты. Дополнительные материалы



Введение.

В учебном пособии, изданном ранее, недостаточно полно были отраженны некоторые важные материалы. Прежде всего, это касается использования новых огнеупоров с температурой применения более 2000°С.; применения отходящих газов производства техуглерода для сушки гранулированного техуглерода; внедрения новых типов воздухоподогревателей и улучшение работы действующих; изменения в системах улавливания и газотранспорта. Наиболее существенные результаты получены за счёт внедрения циркониевых огнеупоров с температурой применения до 2200⁰С В связи с тем, что дополнительные материалы к учебному пособию (так же как и само пособие) расчитаны, в основном, на технических работников заводов по производству технического углерода, в материалах кратко освещаются периоды развития отдельных направлений в совершенствовании технического состояния предприятий по производству техуглерода и отрасли техуглерода в целом.

1. Значение огнеупоров в промышленности технического углерода.

Производство техуглерода относится к высокотемпературным процессам, поэтому огнеупоры являются важнейшим элементом оборудования для производства технического углерода. До начала 60-х годов прошлого века в нашей стране выпускался низкодисперсный техуглерод (сажа) при температурах в печах—1200-1300⁰С. Понятно, что при таких температурах особых требований к огнеупорам не предъявлялось, использовался обычный шамотный кирпич стандартных размеров. Протекторные марки техуглерода с удельной поверхностью 80-85 м2/г. (ПМ-70 и ПМ-70А) начал производить первым в стране Омский завод технического углерода в 1961 году. Эти марки техуглерода отличались высоким качеством и экспортировались в Германскую демократическую республику, во Вьетнам и на Кубу. Однако эффективность такого процесса была низкой, выход техуглерода из сырья составлял всего 23 – 25%.

Получение техуглерода производилось в цилиндрических реакторах, куда подавалось чистое коксохимическое сырьё (антраценовое масло и антраценовая фракция), которое сжигалось при недостатке воздуха при температуре в реакторе 1390-1420⁰С. Естественно, при остановках реакторов температура могла подниматься и выше, поэтому для футеровки этих ректоров применялись динасовые огнеупоры с температурой применения 1600⁰С. Однако эти огнеупоры отличались невысокой термостойкостью, так как изготавливались из окиси кремния (SiO₂). Они не выдерживали резких перепадов температур, но тогда это были лучшие огнеупоры для футеровки реакторов. Основное требование, предъявляемое к этим огнеупорам, состояло в том, чтобы они выдерживали температуру, которая создаётся в реакторе при получении техуглерода.

В середине 60-х годов было построено несколько новых заводов по производству техуглерода (Сызранский, Волгоградский и др.), оснащённых с учётом зарубежного опыта циклонными реакторами, в которых камера горения и зона реакции были разделены. Этот процесс уже принципиально не отличался от современного. Нужно было увеличивать температуру в камере горения для повышения выхода техуглерода, а также увеличивать температуру и в зоне реакции для получения более дисперсных марок техуглерода. Это потребовало поиска огнеупоров с более высокими значениями огнеупорности и термостойкости. Были испытаны различные виды огнеупоров, большинство из них разрушались через 3-4 месяца эксплуатации из-за низкой термостойкости. Удовлетворительный результат показали только муллитокорундовые огнеупоры с содержанием окиси алюминия 62%. В 70 –е годы промышленность огнеупоров начала производить муллитокорундовые огнеупоры с содержанием AL₂O₃ 73%, затем 83%, и в конце 80-х годов содержание окиси алюминия в муллитокорундовых огнеупорах было увеличено до 85-90%. Для промышленности техуглерода Семилукским огнеупорным заводом выпускались набивные массы МКС-85 и КС-90 с содержанием AL₂O₃ соответственно 85 и 90%. Огнеупорные блоки, изготовленные из этих масс, применялись в 90-е годы на всех отечественных заводах техуглерода. Большинство заводов применяло массу КС-90, содержание окиси алюминия в которой составляло 87—90%.

По регламентам Всесоюзного Научно-исследовательского Института технического углерода (ВНИИТУ) допустимая температура применения огнеупоров, изготовленных из этой массы, ограничивалась величиной 1550 ⁰С. При температуре в камерах горения реакторов 1530-1550 ⁰С выход техуглерода N220 из сырья составлял не более 47% даже при применении чистого коксохимического сырья. Средний выход техуглерода по Омскому заводу технического углерода не превышал 54%.Увеличение среднего выхода по сравнению с выходом техуглерода N220 объясняется тем, что полуактивный (каркасный) техуглерод N550 за счёт мероприятий, внедрённых в 90-е годы, имел выход 60-61%/1.7.1/.

На других заводах техуглерода выход был ещё ниже, а на Волгоградском, использующем технологию ВНИИТУ вплоть до конца 2006 года, выход техуглерода серий 200 и 300 составлял всего 42%. Положение было исправлено только после приобретения фактически обанкротившегося завода собственником Омского ЗТУ, после чего на этом заводе была внедрена технология получения техуглерода, разработанная специалистами Омского ЗТУ.      Необходимо отметить, что выход техуглерода из сырья на ведущих зарубежных фирмах Cabot и Degussa был существенно выше уровня выхода на отечественных заводах и составлял для протекторных марок техуглерода 55-61%. Одной из основных причин такой разницы в выходе техуглерода являлось использование зарубежными фирмами для футеровки реакторов огнеупоров с более высокой температурой применения (до 1850⁰С.) – корундовых огнеупоров с содержанием окиси алюминия 99% и хромкорундовых огнеупоров /1.7.2/.Фактически разность температур в камерах горения зарубежных и отечественных реакторов достигала 300⁰С., что и обусловило такую большую разницу в выходе техуглерода из сырья. Если взять наиболее распространённую марку протекторного техуглерода N220, то разница в выходе составляла примерно 8%, а это означает, что для выпуска 1т. техуглерода этой марки зарубежными фирмами затрачивалось на 14,3% меньше сырья, чем на лучших наших заводах. Такое положение сложилось потому, что неправильно была определена максимальная температура применения огнеупоров, изготавливаемых из массы КС–90. Конечно, она значительно уступала по температуре применения 99% корунду, но не на такую же величину(300⁰С). Устанавливая максимальную температуру применения огнеупоров, изготавливаемых из КС-90, Институт ориентировался на температуру начала деформации под нагрузкой 0,2МПа, которая по данным изготовителя – Семилукского завода огнеупоров составляла 1620⁰С., отсюда и появилась в регламентах норма, ограничивающая температуру в зоне горения реактора температурой 1550⁰С. Как показал расчёт, проведённый специалистами ОЗТУ, такой нагрузки на огнеупоры в реакторах нет, она значительно ниже, следовательно, этот показатель при применении огнеупоров в промышленности техуглерода не должен учитываться. Поэтому в 90 х годах температура в камерах реакторов ОЗТУ была повышена до 1590-1620⁰С., что позволило увеличить выход техуглерода протекторных марок примерно на 1,0–1,5%.


С этой книгой читают
Курс "Программы повышения эффективности арматурного хозяйства" дает систематизированное представление о том, как можно развивать такую большую подсистему непрерывных производств как трубопроводная арматура. На многочисленных примерах из области химии и ЦБП и ведущих арматурных компаний демонстрируются современные подходы к решению этой задачи. Пособие предназначено для слушателей курсов дистанционного обучения "Трубопроводная арматура", "Маркетин
Монографии по теории расчета проточной части насосов является современной междисциплинарной работой.
В книге изложены оригинальные выводы и идеи по проблемам теории в расчетах оболочек сосудов и аппаратов до 21МПа и сосудов до 130МПа высокого давления. Материал книги предназначен для специалистов по прочностным расчетам, для конструкторов нефтяных и атомных сосудов и аппаратов.
В работе рассмотрены вопросы разработки второго начала термодинамики, вопросы уравнений энтальпии, энергий Гиббса и Гельмгольца, рассмотрена тема Энтропии.
Их было четверо, и они стояли по четырём сторонам от престола всевеликого Бога. Четыре небесных стража: Михаил, Гавриил, Рафаил и Уриил, передают нам свои мудрости и рассказывают о духовных тайнах.
«Утром через десять веков» – первый сборник стихотворений автора. В книге собраны произведения, написанные в разных стилях в период с 2004 по 2012 год.
Тысячи живых мертвецов в один день разрушили мир, который мы знаем. Миллионы людей пополняют их ряды день за днём, лишь несколько выживших пытаются сколотить группы, чтобы продлить своё скоротечное существование. Сможет ли небольшая компания бывших одноклассников выжить в новых суровых реалиях, или, как и многие, пополнит ряды живых мертвецов?
Эта книга может стать вашим путеводителем в счастливую жизнь. В ней я рассказываю о своём личном опыте трансформации мышления. Все описанные методы и упражнения я опробовал лично и могу утверждать – они работают. Даже если вам кажется, что изменения невозможны, Mind Healing позволить взглянуть на себя и окружающий вас мир по-новому.