Здесь я собрал несколько практических советов, принципов самообразования.
1. Прежде, чем начинать изучение новой науки, надо понять зачем вы это делаете. Карьера, деньги? Да, многие учатся ради этого. Но это слишком незначительно для человека. Деньги и карьера могут быть побочным продуктом от учебы, но не должны быть основными причинами. Ставьте себе великие цели. Если беретесь за математику, то ваша цель – решить одну из задач Гилберта. Если беретесь за DS, то ваша задача – изобрести искусственный интеллект. Не меньше этого. Пускай даже в итоге это у вас не получится, но идти надо по пути великих целей. Только так вы сможете убедить себя, что огромные усилия, которые вы будете прикладывать, стоят того. Только так вы сможет сделать учебу интересной для себя.
2. Ваш план образования должен иметь два направления: сложное и простое. Например, сложное – математика, простое – публицистические книги про ИИ, основы программирования. Почему? Чтобы мозг не скучал. И чтобы мозг понимал, что вы занимаетесь сложной задачей и поэтому мозг должен работать максимально эффективно. Кроме того, пока мозг не ощущает опасность, он не начинает работать на максимальном уровне. Теория вероятностей вполне может быть такой опасностью. Делить учебу на сложные и простые занятия важно еще и потому, что так можно эффективно расходовать время. Если вы слишком заняты другими делами, вы болеете или устали, то можно взять легкие дела из плана учебы. Когда вы освободитесь, то можно будет заняться максимально сложными делами. Вы все время учитесь, а это очень важно. Помните, что нельзя тратить время.
3. Не пытайтесь все понять и запомнить с первого раза. Не надо себя насиловать. Пока вы учите новую науку, ваша задача не запомнить, а понять. Если вы поняли дифференциальное исчисление, а затем забыли половину теорем дифференциального исчисления, то ничего страшного. Понимание прежде всего!
4. Учитесь «слоями». Прочитайте книгу, например, по математике. Попытайтесь понять максимально много, но без насилия над собой. Не пытайтесь запомнить все теоремы, формулы. Ваша задача – понять, повторюсь. Теперь возьмите следующую книгу по математике. Попытайтесь понять максимально много. В этот раз вы поймете уже гораздо больше. Продолжайте, не останавливайтесь. Запомните, нельзя полностью выучить математику, Data Science или любую науку. Ваша цель – тренировать способность понимать. Чем больше будет «слоев» понимания, тем лучше.
5. Новый «слой» должен быть чуть сложнее предыдущего. Например, начните с учебника по математике для школы, затем возьмите учебник для университетов. Не останавливайтесь на этом «слое». Возьмите специальные книги, например подробное изложение линейной регрессии.
6. Не перечитывайте книги, которые вы уже прочитали. Если вы не понимаете какую-то тему, то лучше взять другую книгу по этой теме (или почитать пост в каком-то блоге). Однако у вас должна быть «опорная книга», например по математике, DS, программированию. Это такая книга, которая, на ваш взгляд и для вас, содержит самое простое и полное изложение темы. Это будет ваш справочник. Перечитывать такие книги можно.
7. Не бойтесь сложных книг. Даже если из всей книги вы поняли только 90%, польза огромная. Вы учите свой мозг чувствовать себя как дома в той теме, которой посвящена книга. Вы учите мозг не бояться этой темы. Вы учите термины, теоремы, формулы, алгоритмы.
8. Никогда себя не ругайте. Если что-то не получается сейчас, то это получится потом. Главное – это идти по правильному пути. Это не означает, что вы не должны заниматься самоанализом. Почему что-то не понятно? Что можно сделать, прочитать, чтобы лучше это понять?
9. Создавайте теории. Всегда создавайте теории, идеи. Не ждите, когда станете профессионалом. Ищите необычные решения, делайте безумные предположения, даже если только начали читать первые книги по математике. Главное помнить, что любая идея должна быть проверена. Пусть такой проверкой будет следующая книга или ваш личный проект.
10. Не соглашайтесь с идеями типа «математика это сложно». Не позволяйте себя этим пугать. Для человека нет ничего сложного. Что такое «сложно»? Любое знание – это объекты и связи между ними. «Сложно» – это значит много объектов, много связей. Базовый принцип для приготовления бутерброда и решения математических задач один: возьмите элементы и свяжите их. Нет никакой абстрактной «сложности». Если все дело в количестве элементов и связей, то вам просто нужно время. Базовый принцип вы уже знаете и даже блестяще им владеете (бутерброды же хорошо у вас получаются!).
11. Если вы не понимаете книгу по математике или DS, то причина просто в том, что у вас нет навыка и вы не знаете всех предпосылок. Почему, например, книги по экономике не кажутся такими сложными? Потому что многие понятия из экономики знакомы нам: безработица, прибыль и т. п. Но элементы математики, особенно абстрактной, мы встречаем в жизни редко. Возьмем теорему математики. В том учебнике, который вы читаете, нельзя рассказать все причины, по которым возникла эта теорема. Поэтому вы можете не понять эту теорему. Это не ваша вина. Вы поймете эту теорему, пускай и в следующем «слое». И еще, помните, что формулы на самом деле очень упрощают жизнь! Не обращайте внимание на слова «это очевидно» и т. п. Возможно, это очевидно автору, но не вам. В этом нет проблемы!
12. Создавайте контекст. Что такое контекст? Вы читаете учебники по математике. Но вы должны также читать книги по истории математики, по философии математики и т. п. Чем больше разных знаний у вас будет, тем лучше. Так нашему мозгу легче запоминать и так мозг лучше понимает. Помните, наш мозг воспринимает информацию из контекста, потому что мир тоже состоит из связей.
13. Делайте упражнения. Но только, когда нет других более важных дел. Упражнения, как правило, это искусственные примеры, которые являются скучными и мало применяются в жизни. Например, в обучении языку давно уже поняли, что искусственные примеры – это плохой способ учить язык. Кроме того, упражнения из учебника часто пытаются вас запутать. Это плохо. Зачем? Вам должны объяснять. Опыт придет на конкретных примерах из жизни. Поэтому создавайте свои проекты. Пускай это будут примеры, которые основаны на понятных для вас проблемах. Может быть, вам интересно применить методы математики и DS для изучения экологических проблем. Займитесь этим!