Евгений Беляков - Геометрия-7. Начало. Часть 2

Геометрия-7. Начало. Часть 2
Название: Геометрия-7. Начало. Часть 2
Автор:
Жанры: Учебная литература | Математика
Серии: Нет данных
ISBN: Нет данных
Год: Не установлен
О чем книга "Геометрия-7. Начало. Часть 2"

Вспомогательный учебник, подходит для семейной формы обучения. Соответствует программе для второй четверти седьмого класса.

Бесплатно читать онлайн Геометрия-7. Начало. Часть 2


© Евгений Беляков, 2019


ISBN 978-5-4496-4320-9 (т. 2)

ISBN 978-5-4496-4321-6

Создано в интеллектуальной издательской системе Ridero

Предисловие

Уважаемые дети и родители. Я продолжаю. Надеюсь предыдущий учебник «Геометрия. Начало» вам понравился. Если что-то было (или будет) непонятно, пишите мне по адресу [email protected], и я постараюсь ответить на все ваши вопросы.

Привожу для справок и повторения систему аксиом, которая принята в этом учебнике.

АКСИОМЫ ПЛАНИМЕТРИИ

Пусть задано множество (точек) и система его частей или, иначе говоря, подмножеств (прямых). Выполнены следующие утверждения.

Аксиомы принадлежности

А1. Существует хотя бы одна прямая и каждой прямой принадлежит хотя бы одна точка.

А2. Через две различные точки проходит одна и только одна прямая.

Аксиомы расстояния

А3. Любым двум точкам А и В соответствует неотрицательное действительное число |АВ|, которое называется расстоянием от точки А до точки B. Расстояние |АВ| равно 0 тогда и только тогда, когда точки А и B совпадают.

А4. |AB|=|BA|. То есть расстояние от А до В равно расстоянию от В до А.

А5. Треугольник со сторонами a, b и с существует тогда и только тогда, когда выполняются все три неравенства: a+b> c, a+c> b, b+c> a.

Аксиомы порядка

А6. Три точки принадлежат одной прямой тогда и только тогда, когда одна из них лежит между двумя другими.

А7. Любая точка прямой разбивает ее на два не пересекающихся луча. Любой луч содержит хотя бы одну точку.

А8. Любая прямая разбивает плоскость на две полуплоскости. Любая полуплоскость содержит хотя бы одну точку.

А9. Все точки отрезка, концы которого принадлежат полуплоскости, принадлежат этой полуплоскости. Все точки отрезка, концы которого принадлежат лучу, принадлежат этому лучу.

Аксиомы измерения

А10. Пусть задано неотрицательное число. На любом луче найдется одна и только одна точка, расстояние которой от начала луча равно этому числу. Отрезки равны тогда и только тогда, когда имеют равные длины.

А11. От любого луча в любую примыкающую к нему полуплоск ость можно отложить угол любой градусной меры от 0 до 180. Такой угол только один. Стороны угла в 180 составляют прямую. Углы равны тогда и только тогда, когда имеют равные меры.

А12. Если луч ОМ проходит между сторонами ОА и ОВ какого-либо

Аксиома подвижности

А13. Задана полуплоскость (А, ВС) с примыкающим к ней лучом ВС, и другая полуплоскость (E, FG) с лучом FG. Существует одно и только одно перемещениие всей плоскости на себя, отображающее луч ВС на луч FG, а полуплоскость (A, BC) на полуплоскость (Е, FG).

Аксиома параллельных

А14. Пусть задана прямая (например, АВ). Через любую точку плоскости, не лежащую на данной прямой, проходит не более одной прямой, параллельной к данной прямой АВ.

Квант 1

Свойства равнобедренного треугольника

Фигура, свойства которой мы будем изучать дальше, – равнобедренный треугольник. Треугольником называется фигура, состоящая из трех не лежащих на одной прямой точек и трех попарно соединяющих их отрезков. Точки называются вершинами треугольника, а отрезки – сторонами. Треугольник обозначается специальным значком и тремя буквами: ∆ ABC.

Согласно аксиоме A5, сумма длин двух любых сторон треугольника строго больше длины его третьей стороны. Эта аксиома называется неравенством треугольника. Она показывает, каким не может быть треугольник. Например, не существует треугольника со сторонами 2, 2 и 5, т.к. 2+2 <5. Ее смысл также в том, что путь по прямой – самый короткий.

Длины сторон треугольника (Рис. 1) могут быть различными – такой треугольник будем называть разносторонним (1). Они могут быть все равные по длине, и треугольник будет называться равносторонним (2) или правильным. Но есть еще третий тип: у треугольника могут быть равны хотя бы две стороны, и он будет называться равнобедренным (3).


Рис.1


Первая большая задача, которую мы перед собой поставим – изучение свойств равнобедренного треугольника.

С математической точки зрения, равносторонний треугольник – тоже равнобедренный, потому что для того, чтобы треугольник был равнобедренным, нужно равенство хотя бы двух его сторон. Нужно четко понимать словосочетание «хотя бы». Продумайте следующую фразу: «Если на столе три конфеты, то хотя бы две конфеты на столе есть». Если это понятно – все в порядке.

В равнобедренном треугольнике равные стороны называются боковыми. Третья сторона, которая может быть и не равной боковым, называется основанием. Такие названия связаны с тем, что древние греки изображали равнобедренные треугольники на чертежах, как правило, вершиной кверху, и тогда он был похож на человечка или на египетскую пирамиду.

Докажем теорему.

Т2.1. В равнобедренном треугольнике углы при основании равны (Рис.2).


Рис.2


Для доказательства (Рис.3) наложим треугольник на него самого изнаночной стороной.


Рис.3


Мы совершим перемещение плоскости, такое, при котором флаг Ф1 с красным «держаком» перейдет во флаг Ф2 с зеленым «держаком». Уверен, у вас достаточно воображения, чтобы понять, что это означает просто переворачивание треугольника и наложение его на самого себя.

Тогда совпадут углы при вершине – ведь они равны (в перевернутом виде угол остается равным самому себе, следовательно, наложится сам на себя и совпадет).

Дальше совпадут боковые стороны, они равны, т.к. треугольник равнобедренный. То есть полностью треугольники совпадут. Наконец, углы при основании наложатся друг на друга и тоже совпадут. Значит они равны.

Теорема, о которой мы только что говорили, в обычных обозначениях записалась бы так. Дан равнобедренный ∆АВС, причем АВ=ВС. Утверждается, что <ВАС = <ВСА. После переворачивания получаем треугольник А>1В>1С>1. Совмещаем В и В>1, затем АВ и С>1В>1, ВС и В>1A>1… И треугольники совместятся. Это – хороший способ записи доказательства, но часто суть бывает легче усмотреть, используя не буквы, а стрелки. Если потребуется, вам будет легко записать то или иное доказательство так, как нужно на контрольной или на экзамене.

Верно и следующее утверждение.

Т2.2. Если у треугольника равны два угла, то он – равнобедренный. Доказательство такое же. Переворачиваем треугольник и накладываем сторону, к которой прилежат эти два угла саму на себя (она, естественно, совпадет сама с собой). То есть мы объявляем ее основанием. Другие две стороны пойдут по соответствующим сторонам (так как углы равны), и таким образом, получится совпадение.

Эта теорема – обратная к предыдущей (которая при этом называется прямой теоремой). Что такое «обратная теорема»? Если прямая теорема гласит: «Если А, то В» (если стороны равны, то равны и углы), то обратная будет: «Если В, то А» (у нас: если углы равны, то равны и стороны).


С этой книгой читают
Во второй своей книге об эсперанто автор приводит 8 идей по возможной реформе эсперанто в будущем. Также – русско-эсперантский словарь – основной словарный блок – для простого эсперанто.
Лазарь Заменгоф создавал не то эсперанто, о котором сейчас так много говорят. Оно было значительно «доработано» лингвистами первой половины XX века. Его вариант гораздо проще. Начните с простого эсперанто, воссозданного на основе замысла Заменгофа и в согласии с «фундаменто»! Изучив эту книгу, вы научитесь понимать все, что написано и сказано и на «современном» эсперанто.
Книга предназначена для изучения астрономии в качестве дополнительного предмета («Астрономия») в школе или при семейной форме обучения в 5—7 классах.
Автор создал этот учебник для своих детей, которые учились дома. Дети выросли и стали режиссерами, мультипликаторами, художниками (даже один стал фокусником). И всюду им пригодились знания геометрии, и они не забыли свой любимый маленький учебник.
Эта памятка для репетиторов. Она поможет в поиске учеников. Выполнив эти простые действия репетитор непременно найдет несколько учеников. Полезные ссылки позволят сэкономить время и деньги.
Как сделать уроки истории действительно живыми и интересными? Какие инструменты и подходы помогут учителю воплотить эту идею в жизнь? В данной книге мы предлагаем рассмотреть целый ряд методик и приемов, которые уже доказали свою эффективность на практике и могут стать незаменимыми помощниками для каждого преподавателя. С их помощью можно не просто улучшить успеваемость, но и создать условия, при которых учащиеся почувствуют глубокую личную связь
Волшебная история про добрую фею Пенелопу, живущую в Зачарованном лесу, и ее друзьях. Для самых маленьких детей и их родителей.
Как начать бизнес без вложений за 30 дней -это книга для тех кто хочет открыть свой бизнес но не знает с чего начать , здесь подробно узнаите как сделать первые шаги !
Что такое любовь и какое место она занимает в жизни человека? Как отличить истинное чувство от способности обольщать? На эти и другие вопросы автор пытается найти ответы вместе со своими героями – Синди и Стивеном.
Группе опытных оперативников поручают расследовать убийство… премьера Петра Столыпина, совершенное более ста лет назад! Ученые, создавшие проект «Хронос», переправили сыщиков в прошлое, чтобы те проникли в Киевский театр оперы в тот самый момент, когда и был совершен террористический акт. Это было беспрецедентно сложное и опасное задание, потому как пули террористов не менее смертельны и для путешественников во времени. Но самым трудным оказалось
Искусство красноречия – это не только умение говорить красиво и убедительно, но и способность влиять на людей, формировать их мнения и взгляды. В современном мире, где коммуникация играет важную роль, владение искусством красноречия становится необходимым навыком для достижения успеха в различных сферах жизни.
Кемпинг и трекинг – это виды активного отдыха на природе, которые позволяют насладиться красотами окружающей природы и провести время на свежем воздухе. Кемпинг представляет собой проживание в палатке или автодоме на природе, а трекинг – это пеший поход по горам или лесам. В статье рассматриваются основные правила и советы по организации кемпинга и трекинга, а также рекомендации по выбору необходимого снаряжения и экипировки.