Юрий Почанин - Использование биоразлагаемых материалов

Использование биоразлагаемых материалов
Название: Использование биоразлагаемых материалов
Автор:
Жанр: Современная проза
Серии: Нет данных
ISBN: Нет данных
Год: 2020
О чем книга "Использование биоразлагаемых материалов"

В данной работе приведена классификация биопластиков, полученных из ископаемого и природного сырья. Рассмотрены механизмы биоразложения природных и синтетических биоразлагаемых полимеров. Рекомендованы пути создания композиционных материалов на основе природных полимеров: крахмала, целлюлозы, хитозана или белков, а также использование пластификаторов и различных добавок, в том числе оксибиоразлагаемых, ускоряющих их распад. Рассмотрены основные испытания биоразлагаемых полимеров. Дана характеристика основных промышленно выпускаемых упаковочных биоразлагаемых материалов фирмами ведущих стран мира. Данная работа будет полезна для студентов и специалистов, занимающихся исследованием и применением полимерных биоразлагаемых материалов для изготовления изделий и упаковок в различных отраслях промышленности, в медицине и утилизацией отходов после их использования.

Бесплатно читать онлайн Использование биоразлагаемых материалов


ИЗГОТОВЛЕНИЕ И ПРИМЕНЕНИЕ БИОРАЗЛАГАЕМЫХ ПОЛИМЕРОВ

Введение

Рост производства и потребления полимеров – одно из основных направлений развития мировой экономики. В последние годы темпы роста производства полимерных материалов неуклонно возрастают. Вместе с тем остро встает проблема утилизации полимерных отходов после истечения срока эксплуатации материалов и изделий, получаемых на их основе. До настоящего времени наиболее распространенным методом ликвидации полимерных отходов является компостирование. Однако синтетические полимеры инертны к воздействию факторов окружающей среды и практически не разлагаются в естественных условиях. В этой связи в мире все большее внимание исследователей привлекает задача придания биоразлагаемости синтетическим полимерным системам, которые охраняли бы свои потребительские свойства в течение срока эксплуатации, а по его истечении подвергались бы при определенных условиях физико-химическими биохимическим превращениям, ускоренно разрушаясь и разлагаясь на безвредные для природы компоненты. Биоразлагаемые полимеры получают как естественным, так и синтетическим путем и в основном состоят из сложноэфирных, амидных и простых эфирных функциональных групп. Их свойства и механизм разрушения определяются их точной структурой. Эти полимеры часто синтезируются реакциями конденсации, полимеризацией с раскрытием цикла и металлическими катализаторами. Существует множество примеров и применений биоразлагаемых полимеров. Биоразлагаемые полимеры представляют значительный интерес для различных областей, включая медицину, сельское хозяйство и упаковку. Также прилагаются значительные усилия по замене материалов, полученных из нефтехимии, материалами, которые могут быть изготовлены из биоразлагаемых компонентов. Одним из наиболее часто используемых полимеров для упаковки является полимолочная кислота, PLA. В отличие от большинства пластмасс, биоразлагаемые полимеры могут расщепляться в условиях окружающей среды с помощью микроорганизмов, таких как бактерии или грибки. Полимер, как правило, считается полностью биоразлагаемым, если вся его масса разлагается в почве или воде за период в шесть месяцев.

Данная работа будет полезна для студентов и специалистов, занимающихся исследованием и применением полимерных биоразлагаемых материалов для изготовления изделий и упаковок в различных отраслях промышленности, в медицине и утилизацией отходов после их использования.

ГЛАВА 1. МИРОВОЙ РЫНОК БИОМАТЕРИАЛОВ

Мировое потребление биоразлагаемых пластиков развивается высокими темпами. Среднегодовой рост составляет 27%. В период с 2012 по 2016 г. потребление выросло в 2.7 раза, рис.1. Контейнеры, пленки и пеноматериалы, изготовленные из биоразлагаемых полимеров, используются для упаковки мяса, молочных продуктов, выпечки и пр.



Рис.1.Мировое потребление биоразлагаемых пластиков

Другим наиболее распространенным применением являются одноразовые бутылки и стаканчики для воды, молока, соков и прочих напитков, тарелки, миски и поддоны. Еще одним рынком сбыта для таких материалов является производство мешков для сбора и компостирования пищевых отходов, а также пакетов для супермаркетов. Развивающимся применением этих полимеров является рынок сельскохозяйственных пленок и медицинских изделий. В настоящее время биопластики составляют примерно 1% от 335 млн тонн пластиков, производимых ежегодно. Согласно последним данным Европейского института биопластиков (European Bioplastics), рис. 2, и научно-исследовательского института nova-Institute (Хюрт, Германия), которые являются ведущими организациями в области исследования биополимеров, глобальные производственные мощности по выпуску биопластиков увеличатся примерно с 2,11 млн тонн в 2018 году до приблизительно 2,62 млн тонн в 2023 году. В число биоразлагаемых полимеров входят: крахмальные смеси, PLA – полимолочная кислота, РВАТ – полибутилен адипат/терефталат, PBS – полибутилен сукцинита, PHA – полигидроксиалканоаты. По оценкам экспертов, производственные мощности PHA увеличатся в четыре раза в течение следующих пяти лет. Кроме того, удвоятся производственные мощности PLA к 2023 году. PLA является отличной заменой для PS (полистирола), PP (полипропилена и ABS (акрилонитрилбутадиенстирола). Перспективна разработка PEF (полиэтиленфураноата), нового полимера, который, как ожидается, появится на рынке в 2023 году. PEF сопоставим с PET, но на 100 % состоит из биологического сырья и имеет превосходные барьерные и термические свойства, что делает его идеальным материалом для упаковки напитков, пищевых и непродовольственных товаров. Также ожидается, что к 2023 году на рынок в коммерческом масштабе с сильным потенциалом роста благодаря применению в широком спектре секторов выйдет PP (полипропилен) на биологической основе.



Рис.2. Глобальные производственные мощности биопластиков в 2018 г


PUR на биооснове (полиуретаны) – это еще одна важная группа полимеров, которые имеют огромные производственные мощности с хорошо развитым рынком. Сегодня существует «биопластичная» альтернатива практически для любого обычного пластикового материала соответствующего применения. В зависимости от материала, биопластмассы имеют те же свойства, что и обычные пластмассы, и предлагают некоторые преимущества, такие как уменьшенный углеродный след или дополнительные варианты управления отходами, как, например, промышленное компостирование. Биопластмассы используются в различных секторах: от упаковки, продуктов питания, бытовой электроники, автомобилестроения, сельского хозяйства и игрушек до текстиля и ряда других, рис.3. В структуре потребления крупнейшей областью применения биопластмасс является упаковка. В 2018 году данный сектор составлял почти 65 % (1,2 млн тонн) от общего рынка биопластиков. Для получения гибкой упаковки среди полимеров на биооснове наиболее распространенный тип – материалы на основе крахмалов. За ним по частоте использования следует РВАТ (полибутилен адипат/терефталат), PLA и PBS (полибутилен сукцинита). Для получения гибкой упаковки среди полимеров на биооснове наиболее распространенный тип – материалы на основе крахмалов. За ним по частоте использования следует РВАТ (полибутилен адепта/терефталат), PLA и PBS (полибутилен сукцинита). Европа занимает первое место в области исследований и разработок биопластиков. Здесь выпускается около пятой части от мирового объема подобных материалов. К 2023 году доля биопластика, изготовленного в Европе, достигнет 27%, что обусловлено недавно принятой политикой в таких странах, как Италия и Франция.



Рис.3. Использование биопластмасс в различных секторах


С этой книгой читают
Рассмотрены основные источники биомассы для применения в энергетических целях, которые можно разделить на первичные и вторичные (отходы). Первичные источники – биомасса растущих деревьев, некоторых многолетних трав, водорослей. Из биомассы производится три типа первичного топлива:1. Твердое (уголь, торрефицированная биомасса (биоугль);2. Газообразное (биогаз (СН4, СО2), генераторный газ (СО, Н2, СН4, СО2), синтез-газ (СО, Н2), заменитель природно
В книге подробно в популярном виде рассмотрены основные конструктивные элементы промышленных роботов, а именно, механическая система, информационно-измерительная система, системы управления. Описаны принципы работы датчиков внешней информации, к которым относятся датчики технического зрения, силомоментные, локационные, тактильные, температуры и химические, датчиков внутренней информации роботов. к которым относятся датчики линейных, угловых перем
В книге рассмотрены интегрированные системы управления предприятиями, состоящие из АСУП, АСУТП и робототехнических комплексов. Рассмотрены 5 уровней управления этих систем. На верхнем уровне управления предприятием описаны системы, используемые концепции МRР – ЕRР. На рабочих местах специалистов используются автоматизированные рабочие места (АРМ) с описанием их видов обеспечения и технических возможностей. На уровне цеха используются системы MES
Описаны принципы создания антимикробных полимерных материалов с использованием органических добавок, в том числе на основе лесохимического сырья, хитозана, неорганических добавок с использованием ионов серебра, меди и цинка. Рассмотрены принципы создания бактерицидных добавок с использованием нанотехнологий. Представлены бактерицидные пленки для покрытия различных поверхностей: виниловые пленки с ионами серебра, пленки на основе хитозана, на осно
Это была единственная в своём роде дверь во всём городе. Она не разговаривала на писклявом языке электронных замков и не знала нежного прикосновения магнитных ключей. Она не возвращалась под ручку с автоматическим доводчиком. Эта старинная дверь крепко-накрепко вцепилась тугой пружиной в стену и понимала только грубый язык навесных замков и металлических запоров.
Среди писателей есть такое понятие, как «синдром второй книги». Неважно, был ли дебютный роман успешным или провальным. Решиться на то, чтобы написать следующий, очень сложно. Так и в жизни, прошлое вынуждает нас осторожничать. Или мы боимся того, что новое не сравнится с прошлым счастьем, или боимся повторной неудачи. Но есть только один способ узнать, что будет – взять ручку и писать. Иначе на полке так и останется одна-единственная книга, кото
Что движет каждым из нас? Кем-то тяга к приключениям. Кем-то движет жажда познаний. Кому-то важнее сберечь домашний очаг. А для кого-то важнейшей мотивацией в жизни стала жажда мести. Мести тому, кто убил, использовал, угрожал убить близких. Тому, кто несёт смерть и погибель всем мирам. Прошёл год, после событий в Ларшот Марон. Рук нашёл для себя цель и делает всё, чтобы её достичь. И неважно какими методами. Ведь цель оправдывает средства, не та
Моя матушка мечтает, чтобы я удачно вышла замуж. Я сама — о собственном клочке земли, который заселю драконами. Пусть и не древними, но самыми настоящими. Мошенничество? Может быть. Но проблемы с законом я как-нибудь улажу! А вот как быть с другом детства, который смотрит на меня как на свою женщину? Или с имбисом, наследником древних, с которым я случайно зажгла на балу? Он теперь роет землю своими черными когтями, орет о крови древних в его жил