Юрий Почанин - Технологии энергетического использования биомассы

Технологии энергетического использования биомассы
Название: Технологии энергетического использования биомассы
Автор:
Жанр: Научно-популярная литература
Серии: Нет данных
ISBN: Нет данных
Год: 2021
О чем книга "Технологии энергетического использования биомассы"

Рассмотрены основные источники биомассы для применения в энергетических целях, которые можно разделить на первичные и вторичные (отходы). Первичные источники – биомасса растущих деревьев, некоторых многолетних трав, водорослей. Из биомассы производится три типа первичного топлива:

1. Твердое (уголь, торрефицированная биомасса (биоугль);

2. Газообразное (биогаз (СН4, СО2), генераторный газ (СО, Н2, СН4, СО2), синтез-газ (СО, Н2), заменитель природного газа (СН4);

3. Жидкое (этанол, биодизельное топливо, метанол, растительное масло, и пиролизное масло).

Вторичная биомасса (отходы): отходы лесной, деревообрабатывающей и целлюлозно-бумажной промышленности и отходы животноводства.

В настоящее время имеется большое количество технологий получения топливных брикетов и пеллет. В современной топочной технике применяются слоевой, вихревой, циклонный и факельный процессы сжигания топлива. Рассмотрены технологии двух основных типов биохимических процессов: анаэробное сбраживание и ферментация.

Бесплатно читать онлайн Технологии энергетического использования биомассы


Введение

Поиск и эффективное использование альтернативных источников энергии в последние десятилетия становятся одними из важнейших научно-технических задач, решаемых мировым сообществом. В этой связи многие страны проводят интенсивные исследования по развитию энергетики, основанной на использовании возобновляемых природных ресурсов, в том числе и биомассы. Скорость формирования биомассы на планете равна 250 х10>9 т/год, объемы же образуемых при этом органических соединений составляют 100 х10>9 т. Перспективы развития биоэнергетики огромны, учитывая, что лишь 0,5 % доступной на планете биомассы потребляется человеком в пищу.

Биомасса— шестой по запасам из доступных на настоящий момент источников энергии после горючих сланцев, урана, угля, нефти и природного газа.

Биомасса— пятый по производительности возобновляемый источник энергии после прямой солнечной, ветровой, гидро-и геотермальной энергии. Биомасса— крупнейший по использованию в мировом хозяйстве возобновляемый ресурс (более 500 млн тонн у. т. в год). Биомасса применяется для производства тепла, электроэнергии, биотоплива, биогаза (метана, водорода).

Основу биомассы нашей планеты составляют органические соединения углерода, которым свойственно выделение тепла в процессе соединения с кислородом при сгорании. Первоначальная энергия биомассы – кислород, образуется в процессе фотосинтеза под влиянием солнечных лучей. В результате ряда химических или биохимических процессов биомасса может трансформироваться в газообразный метан, твердый древесный уголь или жидкий метанол.

В качестве биотоплива могут быть использованы: биомасса древесины, отходы древесины, образующиеся при ее рубке и обработке, биомасса быстрорастущих кустарниковых и травянистых растений, лигнин, горючая часть коммунальных отходов, отходы, получаемые при мелиоративных работах, расчистке территорий под новое строительство, отходы растениеводства, горючие отходы перерабатывающей и пищевой промышленности, животноводства.

В 2003 г. путем переработки биомассы во всем мире было получено 24ГВт/ч электроэнергии. Ожидается, что к 2025 г. мировое потребление энергии биомассы может составить до 85ГВт/ч электроэнергии и 250ГВт/ч тепловой энергии. До 40 % продукции биоэнергетики в развитых странах будет составлять этанол, 20 % – дизельное топливо, 15 % – биогаз, 25 % – различные виды моторного топлива.

Ресурсы биомассы имеются в большинстве стран и регионов мира. Использование биомассы в энергетических целях до недавнего времени сводилось к прямому сжиганию либо в открытых очагах, либо в печах и топках, но с весьма низким КПД. За последнее время использование биомассы в различных ее формах (дерево, древесный уголь, отходы сельскохозяйственного производства и животных) в мире в целом снизилось. Однако в развивающихся странах этот вид энергоресурсов по-прежнему составляет в среднем 20 %. По оценкам Международного энергетического агентства, около 2,4 млрд. человек в развивающихся странах зависят от традиционной биомассы при отоплении помещений для жилья и приготовлении пищи. При этом в ряде стран Африки использование биомассы для энергетических целей равно примерно 60 % от общего энергопотребления, в странах Азии – до 40 %, в странах Латинской Америки – порядка 30 %. Даже в таких развитых государствах, как Финляндия и Швеция, лесная биомасса обеспечивает 16–18 % производимой энергии, причем практически весь этот объем покрывается новыми посадками. В странах Европейского Союза доля энергии биомассы в 2002 году составила около 45 % от общего производства ВИЭ (возобновляемые источники энергии). Общие ресурсы биомассы в Европе (в млн. т сухой массы в год) составляют: древесного топлива -75, древесных отходов -70, сельскохозяйственных отходов -250, городского мусора -75. Кроме того, биомасса, выращиваемая на энергетических плантациях, дает 250 млн. т в год.

Сегодня использование энергии биомассы осуществляется по следующим основным направлениям: производство биогаза и удобрений: на малых установках по переработке сельскохозяйственных и бытовых отходов мелких крестьянских хозяйств. Число таких предприятий в мире достигло 6 млн., причем 90 % из них находятся в Китае и Индии; на крупных установках по переработке городских отходов и сточных вод (более 1400 установок во многих странах Европы, Азии и Америки); на мощных комбинированных установках (фабриках) по переработке отходов сельского хозяйства, включая животноводство (такие установки получили большое распространение в Дании, где находится 18 из 50 европейских фабрик); производство на основе биомассы различных видов жидкого топлива, прежде всего этанола и биодизельного топлива (в этой области лидируют США, Канада и Бразилия); производство на основе биомассы искусственных продуктов, используемых во многих областях промышленности (развито в США, Канаде, Японии, Швеции и других странах); производство электроэнергии путем переработки твердых бытовых отходов и биогаза городских свалок (в основном развито в США, Дании, Германии, Италии); производство электроэнергии из отходов лесной и дерево-обрабатывающей промышленности (развито, прежде всего, в США, Канаде и Швеции). В США на газе от свалок работает до 170 небольших электростанций, самая крупная из которых, в городе Уиттьер, ежегодно вырабатывает 50МВт/ч энергии, обеспечивая электричеством более 20 тысяч домов. Конечно, подобные технологии имеют локальное значение и решают скорее не топливную проблему, а проблему утилизации отходов и улучшения экологической обстановки. В последнее время внимание к эффективному энергетическому использованию биомассы существенно повысилось, а вновь созданные технологии позволяют использовать биомассу значительно более эффективно.

Использование биологического топлива в промышленных объемах способно обезопасить мир от экологического загрязнения, делая возможным непрерывное получение энергии. Так, при сгорании биологического топлива большая часть энергии рассеивается, однако конечные продукты сгорания могут быть снова преобразованы в топливо путем естественных экологических процессов.

Фактически, биомасса способна обеспечить возможность производства всех видов топлива для промышленного и сельскохозяйственного применения, включая жидкое топливо для заправки транспорта. Однако, промышленная переработка биомассы будет успешной и даст плоды если придерживаться нескольких основополагающих принципов:

1. Принципа экономической эффективности. Некоторые виды биотоплива могут требовать для своего производства энергии больше, чем сами смогут в последующем дать, поэтому при организации процесса переработки биомассы важно брать во внимание фактор выгоды. К примеру, этиловый спирт из соломы и растительного волокна обойдется в разы дешевле того же продукта из крахмала растений. Любая переработка сырья должна быть экономически оправдана.


С этой книгой читают
В данной работе приведена классификация биопластиков, полученных из ископаемого и природного сырья. Рассмотрены механизмы биоразложения природных и синтетических биоразлагаемых полимеров. Рекомендованы пути создания композиционных материалов на основе природных полимеров: крахмала, целлюлозы, хитозана или белков, а также использование пластификаторов и различных добавок, в том числе оксибиоразлагаемых, ускоряющих их распад. Рассмотрены основные и
В книге подробно в популярном виде рассмотрены основные конструктивные элементы промышленных роботов, а именно, механическая система, информационно-измерительная система, системы управления. Описаны принципы работы датчиков внешней информации, к которым относятся датчики технического зрения, силомоментные, локационные, тактильные, температуры и химические, датчиков внутренней информации роботов. к которым относятся датчики линейных, угловых перем
В книге рассмотрены интегрированные системы управления предприятиями, состоящие из АСУП, АСУТП и робототехнических комплексов. Рассмотрены 5 уровней управления этих систем. На верхнем уровне управления предприятием описаны системы, используемые концепции МRР – ЕRР. На рабочих местах специалистов используются автоматизированные рабочие места (АРМ) с описанием их видов обеспечения и технических возможностей. На уровне цеха используются системы MES
Описаны принципы создания антимикробных полимерных материалов с использованием органических добавок, в том числе на основе лесохимического сырья, хитозана, неорганических добавок с использованием ионов серебра, меди и цинка. Рассмотрены принципы создания бактерицидных добавок с использованием нанотехнологий. Представлены бактерицидные пленки для покрытия различных поверхностей: виниловые пленки с ионами серебра, пленки на основе хитозана, на осно
«Погожим июльским утром, лежа на диване, Олег Запольский читал газету «Криминальный Теремковск». Ее приносили раз в неделю, по понедельникам, уже после того как отец уходил на работу. После завтрака Олег вынимал газету из почтового ящика и читал от корки до корки…»
«Немилосердно печет находящееся в зените солнце. Такое впечатление, будто свирепые лучи вспарывают тебе кожу. Ветра в это полдневное время почти нет. В августе часто бывает так, что штиль держится несколько дней подряд. Поэтому парусная шхуна "Сильвия" передвигается сейчас по морю в лучшем случае со скоростью два узла. Пройдет милю-другую, вновь застынет, уныло всхлипнут штопаные-перештопаные паруса. И опять жди, когда трехмачтовая деревянная пос
Это очень профессиональная проза. С наблюдательностью, с точным воспроизведением речи, с мастерским выстраиванием диалогов, с благородным лаконизмом языка, с сильными сквозными образами, с «боковой подачей» темы (когда самое главное происходит не на первом плане, а где-то сзади – как в фильмах Алексея Германа). Профессионализм стал довольно редким явлением в современной литературе – так что от души радуешься самому факту наличия профессионализма.
Александр Карасёв родился в 1971 году в Краснодаре. Окончил истфак и юрфак КубГУ. В звании лейтенанта командовал взводом внутренних войск на чеченской войне. Известность писателю принесла книга «Чеченские рассказы», ставшая открытием года Бунинской премии (2008).Эта книга о том, как вживается, втягивается в войну нормальный человек, как война становится его жизнью, становится очень быстро и незаметно для него самого. Книга содержит нецензурную бр