Smart Reading - Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил

Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил
Название: Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил
Автор:
Жанр: Научно-популярная литература
Серии: Нет данных
ISBN: Нет данных
Год: Не установлен
О чем книга "Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил"

Этот текст – сокращенная версия книги Кэти О'Нил «Оружие математического поражения». Только самые ценные мысли, идеи, кейсы, примеры.

О книге

Кэти О'Нил, бывший аналитик с Уолл-стрит, в своей книге «Оружие математического поражения» знакомит общественность с тревожным симптомом. Математические модели, которые пронизывают современную жизнь, угрожают разрывом социальных связей. Мы живем в эпоху алгоритма. Решения, которые оказывают влияние на нас, принимаются не людьми, а машинами. Теоретически это должно приводить к справедливому распределению благ: если всех судят по одним правилам, значит, предвзятость устранена. Однако на деле математические модели, которые работают с большими данными, непрозрачны, их невозможно проверить и отрегулировать. Модели поддерживают счастливчиков и наказывают угнетенных. Кэти О'Нил призывает разработчиков брать на себя ответственность за свои алгоритмы, а политиков – регулировать их использование.

Зачем читать

• Взглянуть на BigData с критической точки зрения, проанализировать их пользу и перспективность.

• Ознакомиться с доступными практическими примерами исследований современных математических моделей.

• Углубить экспертные знания аналитиков и маркетологов в области BigData.

Об авторе

Кэти О'Нил – обладательница степени PhD по математике Гарвардского университета. Работала на математическом факультете Массачусетского технологического института. В разгар кредитного кризиса служила частным аналитиком в хедж-фонде D. E. Shaw. Обозреватель Bloomberg View и автор блога mathbabe.org. Участница группы Альтернативного банкинга движения Occupy Wall Street, а также стартапов в области систем, предсказывающих покупки и клики. Основатель и директор аудиторской компании ORCAA.

Бесплатно читать онлайн Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил


Оригинальное название:

Weapons of Math Destruction: How Big Data Increases Inequality and Threatens


Автор:

Cathy O'Neil


Тема:

Обязательное чтение


Правовую поддержку обеспечивает юридическая фирма AllMediaLaw

www.allmedialaw.ru

Введение

Начало активного развития экономики Big Data пришлось на 2008—2010 гг., когда математики и специалисты в области статистики погрузились в изучение жизни человека: его желаний, интересов, физических возможностей и психологических особенностей. Их главной целью стало научиться оценивать, предугадывать и влиять на действия homo sapiens в работе, обучении, сексе, контролировать лояльность людей к идеям.

Но «что-то пошло не так», и Big Data стали превращаться в оружие математического поражения. Один из главных просчетов специалистов в том, считает автор, что созданные математическим путем приложения слишком часто базируются на ошибочных алгоритмах поведения человека. Вынесенные самообучающейся программой вердикты не анализируются и не обсуждаются в обществе. Кроме того, сегодня очевидно, что ущемляются права обычных людей. Если несправедливость выводов алгоритма по отношению к себе заметит обеспеченный человек, то он сможет добраться до причин и восстановить справедливость. Кто небогат, либо не заметит ошибку машины, либо не будет располагать ресурсами для ее исправления.

Так, соискателю могут отказать в работе из-за выводов Big Data о его слишком низком кредитном рейтинге или криминальном прошлом. Иногда это происходит из-за сбоя программы, по ошибке. Но жертва почти гарантированно не узнает, что в действительности послужило причиной неудачи. Несправедливость проявляется в разных сферах жизни: алгоритм склоняет людей к получению необоснованно дорогого образования, переплате за страховки, дорогим кредитам и т. д. В итоге бедные становятся еще беднее.

Богатым же алгоритм помогает ставиться еще богаче и влиятельнее. Они имеют доступ к данным исследований поисковых систем и социальных сетей, могут пользоваться их инструментами влияния на пользователей. Недавние скандалы, связанные с участием Facebook в сборе и незаконном распространении персональных данных, – только вершина айсберга. Есть все основания полагать, что Google и Facebook заходят намного дальше, лоббируя интересы партий и конкретных кандидатов.

Сложившуюся ситуацию необходимо менять. И не только из-за растущей несправедливости и разрыва между бедными и богатыми. Просчеты в алгоритмах Big Data могут превратиться в настоящую катастрофу в обозримом будущем, когда вся информация из интернета будет стекаться в недра AI – искусственного интеллекта. Невозможно спрогнозировать, что мы получим на выходе.

Поэтому всем, кто имеет отношение к Big Data, необходимо ответственнее подходить к разработке новых алгоритмов. Уже работающие модели должны быть проанализированы и исправлены совместными усилиями ученых и общественности. Но самое главное – человечество должно изменить само определение успешности возможностей Big Data. Вместо служения прибыли они должны научиться служить людям.

Ознакомившись с саммари, вы поймете опасность текущих трендов в развитии Big Data. Научитесь избегать ошибок в процессе трудоустройства и отличать социальную рекламу в соцсети от проводимых над вами опытов. Узнаете, кто и как вас склоняет к голосованию за того или иного кандидата. Разберетесь в том, какие шаги необходимы для исправления ситуации.

1. Оружие матпоражения номер 1: бесконтрольное влияние

1.1. Алгоритмы Big Data используются сегодня во множестве сфер, оказывая самое непосредственное воздействие на жизнь человека. Наименее успешны матмодели в тех областях, которые связаны с моделированием поведения человека в глобальных масштабах. Не располагая необходимым объемом достоверных данных, специалисты заполняют пробелы другой, близкой и не очень, информацией на собственное усмотрение.

Это приводит к искажению конечного результата, и в итоге негативно сказывается на судьбах людей. Если раньше человеку с плохим кредитным рейтингом просто отказали бы в очередном кредите, то сегодня это показатель его общего грехопадения: Big Data используют данные о финсостоянии как промежуточные для применения в сфере трудоустройства и даже при поиске партнера для жизни. То же касается людей, однажды совершивших правонарушение. Таким образом Big Data превращаются в оружие математического поражения.

Поведение человека в той или иной ситуации зависит от очень большого количества факторов и обстоятельств. Никакой маталгоритм на сегодняшний день не способен их полноценно охватить, и маловероятно, что сможет в будущем. Ему бы пришлось справляться с часто меняющимися у людей вкусами и пристрастиями, с которыми порой неспособен справиться сам человек. Можно запрограммировать постоянные величины, но нельзя учесть постоянные изменения, утверждает автор.

Любые просчеты на начальном этапе создания алгоритма ведут к более глобальным с каждым новым витком участия Big Data в жизни людей. Этому способствует закрытость системы. Без дополнительных усилий она не раскроет причин, почему человеку отказали в работе или подняли стоимость страховки. На выяснение сути и восстановление справедливости необходимо тратить время, силы и средства, которые в нужной мере есть не у всех.


С этой книгой читают
Это саммари – сокращенная версия книги «Против часовой стрелки. Осознанный подход к здоровью и сила возможности» Эллен Лангер. Только самые ценные мысли, идеи, кейсы, примеры.В теории все мы согласны с расхожей фразой «нет ничего невозможного». Но умеем ли мы доказать это на практике? Еще в 1979 году психолог и исследователь Эллен Лангер провела эксперимент, который убедительно доказал: предоставление человеку выбора, удачно подобранное слово и н
Это саммари – сокращенная версия книги «Богиня глюкозы. Нормализуйте уровень сахара в крови, чтобы изменить свою жизнь» Джесси Инчаспе. Только самые ценные мысли, идеи, кейсы, примеры.«Вам нужен сахар, чтобы набраться энергии, и орехи, чтобы поддержать мозг, – съешьте батончик X», «Чувствовать сонливость в час дня – нормально. Выпейте кофе Y». Мы знаем, что это маркетинговые уловки, но… едим батончики и пьем кофе. Уровень глюкозы в крови скачет в
Этот текст – сокращенная версия книги Карен Прайор «Не рычите на собаку: новое искусство обучения». Только самые ценные мысли, идеи, кейсы, примеры.О книгеМетоды, которые в 1984 году Карен Прайор изложила в своей книге «Не рычите на собаку», изменили представления о поведенческой психологии и смягчили способы дрессировки животных. Она доказала гипотезу о том, что эффективно обучать можно не только человека, но и любое живое существо, вплоть до мо
Это саммари – сокращенная версия книги «Оффер на $100 миллионов. Как делать предложения, от которых невозможно отказаться» Алекса Хормози. Только самые ценные мысли, идеи, кейсы, примеры.Что лучше, снотворное или медитация перед сном? Кажется, ответ очевиден. Тогда почему мы не знаем ни одного многомиллиардного бизнеса, связанного с медитацией, а число сверхприбыльных фармацевтических компаний растет с каждым годом? Парадоксально, но люди тратят
Я смотрю в это чистое небо, в нем я вижу тебя, твой образ, твоё отражение.В этом небе люблю тебя, в этой жизни уже ничего мне не надо!Лишь бы с тобой быть всегда рядом. Держать тебя за руку, смотреть в твои глаза, в них видеть счастье и любовь, покой и нежность!!!
Для кого-то свадьба – это праздник. Для организаторов – большие хлопоты. Для тех, кто делает видеосъёмку на них, – тяжёлый труд. О приключениях на трёх свадьбах видеооператора. Взгляд со стороны. О монтаже. А также о других приключениях и рассказах из жизни написано в этой книге.
Мама говорит, что в квартире у бабы Кати живут непослушные дети… Старуха хватает их за шиворот и подвешивает на крючки в чулане, чтобы подумали о своем поведении. Правда, все это выдумки. Реальность оказывается куда интереснее сказок. За лето – лучшее время для приключений. А странная пенсионерка Кошатница, постоянно подкармливающая четвероногих друзей, играет в них ключевую роль.
В класс приходит новенькая, и Богдан узнает в ней ту, что снилась ему последние три года. Ту, что при единственной встрече восемь лет назад оставила неизгладимый след в его душе. Но, пережив гибель родных, она изменилась. И Богдан пытается помочь ей, вернуть к жизни ту девочку, которая покорила его сердце. Но школьная среда – не место для сентиментальных поступков. Одноклассники не принимают «ненормальную» в свою среду и ставят Богдана пред сложн