Джейд Картер - Обработка больших данных

Обработка больших данных
Название: Обработка больших данных
Автор:
Жанры: Самоучители | Программирование | Информатика и вычислительная техника
Серии: Нет данных
ISBN: Нет данных
Год: 2024
О чем книга "Обработка больших данных"

Книга является пособием для изучения технологий больших данных, охватывая основные и продвинутые аспекты работы с данными в распределенных системах. Начав с основ, она объясняет значение БД, их эволюцию и экосистему Hadoop, включая компоненты и инструменты: HDFS, MapReduce, Hive, Pig, HBase, Sqoop и Flume.

Автор раскрывает архитектуру и принципы работы Apache Hadoop, а также примеры использования MapReduce и работу с данными в HDFS, Apache Spark, описывая его основные компоненты, такие как RDD, DataFrames, Spark SQL, Spark Streaming, MLLib и GraphX, и предоставляет практические примеры установки и настройки.

Раздел, посвященный Apache Kafka, рассматривает основы архитектуры, проектирование и настройка кластеров, а также интеграция с другими системами.

Практические примеры и проекты предлагают возможность применить полученные знания, анализируя данные, разрабатывая потоковые приложения и интегрируя технологии Hadoop, Spark и Kafka в единую систему.

Бесплатно читать онлайн Обработка больших данных



Слово от автора

В современном мире данных существует огромное количество информации, которая поступает к нам со всех сторон. Начиная от записей в социальных сетях и заканчивая данными с промышленных сенсоров, объемы информации, с которыми нам приходится работать, растут с невиданной скоростью. Именно в этом контексте технологии больших данных выходят на первый план, открывая перед нами новые возможности для анализа, прогнозирования и принятия решений.

Эта книга родилась из моего стремления помочь вам не просто понять, но и эффективно применять технологии больших данных в ваших проектах и бизнесе. Я постарался охватить весь спектр тем, начиная с основ и заканчивая продвинутыми техниками и реальными примерами. Мы начнем с изучения того, какие преимущества могут дать большие данные вашей организации и с какими вызовами вам предстоит столкнуться. Затем мы детально разберем архитектуру и экосистему Apache Hadoop – одной из ключевых платформ для работы с большими данными. Вы узнаете, как развернуть и настроить кластер Hadoop, и научитесь решать практические задачи с его помощью.

Особое внимание в книге уделено Apache Spark, который позволяет значительно ускорить обработку данных и предлагает широкий спектр инструментов для работы с потоками данных, машинным обучением и графовыми вычислениями. Мы также погрузимся в мир Apache Kafka – платформы, которая революционизировала подход к потоковой передаче данных, предоставляя мощные инструменты для интеграции и обработки данных в реальном времени.

Эта книга предназначена для того, чтобы стать вашим проводником в мире больших данных. Независимо от того, являетесь ли вы новичком или опытным специалистом, вы найдете здесь ценные знания и практические примеры, которые помогут вам достичь новых высот в вашем деле. Я надеюсь, что она вдохновит вас на эксперименты и открытия в этой захватывающей области.

С уважением,

Джейд Картер



Глава 1. Введение в Технологии Больших Данных

– Определение и значение больших данных

– История и эволюция технологий больших данных

– Обзор экосистемы Hadoop и сопутствующих технологий


Определение и значение больших данных:

Большие данные (Big Data) – это наборы данных, которые настолько велики или сложны, что традиционные методы обработки данных не справляются с ними. Эти данные включают структурированную, полуструктурированную и неструктурированную информацию, которую можно анализировать, чтобы выявлять тенденции, закономерности и другие полезные сведения.

Такие данные могут поступать из различных источников, включая социальные сети, интернет-устройства, транзакционные системы, сенсоры и многое другое. Важные характеристики больших данных обычно описываются через концепцию "5 V»:

Volume (Объём): Огромное количество данных, измеряемое в петабайтах и эксабайтах.

Velocity (Скорость): Высокая скорость создания и обработки данных.

Variety (Разнообразие): Разнообразие типов данных (структурированные, неструктурированные, полуструктурированные).

Veracity (Достоверность): Качество данных, включая их точность и достоверность.Value (Ценность): Возможность извлечения полезной информации и создания ценности для бизнеса или научных исследований.

Значение больших данных заключается в их способности радикально трансформировать бизнесы и организации, обеспечивая более глубокое понимание различных аспектов их деятельности. Прежде всего, большие данные позволяют компаниям анализировать огромные массивы информации в реальном времени или почти в реальном времени, что существенно ускоряет процесс принятия решений. Это особенно важно в условиях высокой конкуренции, где скорость реакции на изменения рынка или поведения клиентов может стать ключевым преимуществом. Например, в ритейле анализ данных о покупках и предпочтениях клиентов позволяет прогнозировать спрос, оптимизировать запасы и даже персонализировать предложения, что в конечном итоге увеличивает продажи и снижает затраты.

Кроме того, анализ больших данных позволяет глубже понимать поведение клиентов. Компании могут отслеживать не только прямые взаимодействия с клиентами, такие как покупки или обращения в службу поддержки, но и косвенные данные, например, активность в социальных сетях, отзывы и комментарии. Это дает возможность формировать более точные профили клиентов и создавать персонализированные маркетинговые стратегии. Например, благодаря большим данным можно определить, какие продукты или услуги вызывают наибольший интерес у определённых сегментов аудитории, и адаптировать маркетинговые кампании под их нужды и предпочтения.

Кроме маркетинга и продаж, большие данные имеют важное значение и для оптимизации внутренних операций компаний. С их помощью можно анализировать процессы производства, логистики, финансового управления и других аспектов деятельности. Это позволяет выявлять узкие места, предсказывать и предотвращать сбои, повышать эффективность использования ресурсов и снижать операционные расходы. В таких отраслях, как производство или энергетика, анализ данных может привести к значительным улучшениям, включая оптимизацию процессов техобслуживания оборудования, снижение потребления энергии и минимизацию потерь.

В конечном итоге, большие данные не только способствуют повышению эффективности и снижению затрат, но и создают новые возможности для бизнеса. Они позволяют разрабатывать инновационные продукты и услуги, выходить на новые рынки, создавать новые бизнес-модели. Например, компании могут использовать анализ данных для разработки новых функций продуктов на основе анализа пользовательского опыта или для создания новых сервисов на основе анализа потоков данных в реальном времени.

Значение больших данных заключается не только в их объёме, но и в их способности приносить реальные преимущества бизнесу, трансформируя его подходы к работе с информацией и взаимодействию с клиентами, что в конечном итоге ведет к улучшению конкурентоспособности и устойчивому развитию.

История и эволюция технологий больших данных

Технологии больших данных имеют свою историю, которая берет начало с начала развития информационных технологий:


–  1970-е годы

В 1970-е годы произошел значительный прорыв в области хранения и управления данными с появлением реляционных баз данных (RDBMS). До этого времени данные хранились в основном в виде иерархических или сетевых моделей, которые были сложными и малоподходящими для масштабируемого хранения и обработки данных. Ключевой вехой этого периода стало введение концепции реляционных баз данных, предложенной Эдгаром Коддом, исследователем из компании IBM.

Реляционные базы данных основывались на простой и элегантной идее: данные организовываются в таблицы (реляции), где каждая строка представляет собой отдельную запись (запись), а каждая колонка – отдельное поле данных. Эта структура обеспечивала высокую гибкость и простоту управления данными. Кроме того, реляционная модель позволяла легко выполнять сложные запросы с использованием SQL (Structured Query Language) – стандартизированного языка запросов, разработанного для работы с реляционными базами данных. SQL стал одним из основных инструментов, позволившим пользователям манипулировать данными, выполнять поиск, сортировку, фильтрацию и объединение данных из разных таблиц.


С этой книгой читают
В данной книге учитываются последние исследования и технологические достижения в области генеративных нейронных сетей. Автор предоставляет читателю практическое и глубокое понимание процесса создания нейросети для генерации изображений, а также вдохновляет на новые творческие подходы и исследования.
Исследуйте мир машинного обучения с этой книгой, предназначенной для тех, кто стремится погрузиться в фундаментальные принципы и передовые методы этой динамично развивающейся области. От введения в основные концепции до глубокого погружения в продвинутые техники и приложения, каждая глава представляет собой комплексное исследование, подкрепленное практическими примерами и советами. Будучи ориентиром как для начинающих, так и для опытных практиков
Книга предлагает полное погружение в мир нейросетей, начиная с основных концепций и методов обучения и до сложных алгоритмов и техник. Читателю предоставляются понятные объяснения и примеры, а также многочисленные практические задания и проекты для непосредственного применения знаний. Помимо теоретической составляющей, вас ждут многочисленные практические задания и проекты, которые позволят вам непосредственно применить свои знания и умения. Вы н
Книга является отличным ресурсом для тех, кто хочет познакомиться с основами нейросетей и их применением в жизни. В книге подробно объясняется, что такое нейрон и как он работает в нейросети, что такое веса и смещения, как нейрон принимает решения и как строится нейросеть. Кроме того, книга охватывает такие темы, как обучение нейросетей, основные типы нейросетей (полносвязные, сверточные и рекуррентные), и их применение в задачах классификации, р
Если вы хотите бросить курить, то эта книга – ваш лучший друг. Она содержит простые и эффективные методы, которые помогут вам избавиться от никотиновой зависимости без синдромов отмены.Цитата: «Можно избавиться от сигарет, не испытывая при этом никакого желания курить.»
"Зеркало души: Открывая секреты внутреннего мира" является путеводителем по глубинам человеческого сознания, призванным помочь читателям раскрыть и изучить свои самые тайные мысли, эмоции и желания. В этой книге автор предлагает уникальное сочетание психологических теорий, философских идей и практических техник для самопознания, которые помогут вам проникнуться к сути своего внутреннего мира и обрести гармонию и равновесие.
Этот самоучитель рассчитан на то чтобы научить думать на Японском тех кто уже освоил базовую таблицу японской письменности.
Хотите стать переводчиком, но не знаете, что именно вам интересно, на что обратить внимание, с чего начать? Эта книга ответит на все ваши вопросы!Перевод – удивительная сфера, объединяющая людей самого разного склада ума, в которой почти любой человек может найти комфортное место. Перед вами настоящий путеводитель по миру переводов и локализации, написанный профессионалом своего дела. Автор Елена Худенко кратко расскажет про все виды перевода, но
«Каббалистическая астрология» – это не просто сборник гороскопов. Это ключ к пониманию своей истинной природы, которое, в свою очередь, позволит вам менять жизнь в соответствии с вашими потребностями.Традиционная астрология предрекает вашу судьбу. Каббалистическая астрология дает вам возможность свободного выбора и обозначает множество вариантов будущего, из которых вы сможете выбрать лучший и самостоятельно управлять своей жизнью.В формате PDF A
Дон Нигро «Женские истории/Women’s Tales/2021». Пьеса-коллаж из пяти женских монологов.«Странные сестры/The Weird Sisters/1996». Эта Грушенька не из романа Федора Михайловича Достоевского «Братья Карамазовы». Она далеко не всегда понимает, какой мир реальный, а какой вымышленный. И чтобы поменьше путаться, читает Достоевского.«Крокодила/Crocodile/2012». Философское эссе о призрачности наших устремлений. Как часто мы гонимся за несбыточным, чтобы,
«Гуля Шерлокова: Призрак в ночь Хэллоуина» – новая захватывающая история о знаменитой собаке-детективе. В этот Хэллоуин Гуля вместе с друзьями оказывается в старом доме на Ужасной улице, полном таинственных звуков и привидений. Сможет ли она разгадать, кто скрывается за маской призрака и раскрыть старинную тайну амулета? Эта история наполнена неожиданными поворотами, юмором и захватывающей атмосферой Хэллоуина, которая порадует всю семью.
Во втором томе жизнь клуба набирает обороты! Герои продолжают делиться своими успехами и провалами, открывают новые горизонты и попадают в нелепые, но всегда поучительные ситуации. Это хроника настоящей дружбы, где каждое собрание превращается в мини-спектакль, а герои сталкиваются с внутренними и внешними вызовами. Смех и драма, личные откровения и неожиданные события делают этот том захватывающим продолжением.