Например, в однородном полупроводнике Демберовское (диффузионное) фото напряжение для сколь угодно большой интенсивности возбуждающего света не превышает значения [1].
(1)
где E>g – ширина запрещенной зоны полупроводника, n>1 и n>0 – соответственно неравновесная и равновесная концентрации носителей, N>c – плотность состояний.
Другим примером может служить возникающие фотонапряжение при освещении p-n —перехода [2].
(2)
которое также не превышает E>g. Здесь n>n и p>p – соответственно концентрации электронов в n – области и дырки в р – области. E>Fn и E>Fp – энергии уровня Ферми в n – и р – областях.
Исключение из этого правила составляли лишь полупроводниковые текстуры в которых наблюдается эффект аномально больших фото напряжений (АФН эффект), обусловленный сложением элементарных фото-ЭДС Дембера (1) или элементарных фото-ЭДС (2), развивающихся на отдельных р-n —переходах текстуры [3].
В таких текстурах из напыленных слоев CdTe, Ge, Si, GaAs, PbS, CdSe и т. д. фото напряжения могут достигать значений порядка нескольких сотен Вольт на сантиметр длины в направлении сложения элементарных фото-ЭДС (1) или (2).
В последние годы стало ясно, что в термодинамических неравновесных условиях возможны токи иной природы, обусловленные отсутствием среды центра симметрии. Важнейшим этого класса эффекта является аномальный фотовольтаический эффект (АФ эффект).
АФ эффект заключается в том, что при равномерном освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [4,5] был назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому эффекту (АФ эффект) в сегнетоэлектрике.
Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [4,5] является частным случаем АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга α>ijk [5,6]:
(3)
Согласно (3), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето, пиро или пъезоэлектрического кристалла) в нем возникает фотовольтаический ток J>i, знак и величина которого зависят от ориентации вектора поляризации света с проекциями E>J, E>K>*.
Компоненты тензора α>ijk отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток J>i генерирует фотонапряжения
где σ>т и σ>ф соответственно темновая и фотопроводимость, l расстояние между электродами. Генерируемое фотонапряжения в кристаллах без центра симметрии порядка (10>3—10>5). В/см. В соответствии с (3) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока J>i. Сравнение экспериментальной угловой зависимости J>i (b) с (3) позволяет определить фотовольтаический тензор a>ijk или фотовольтаический коэффициент
(a* – коэффициент поглощения света).
В работе [10] определен фотовольтаический коэффициент в кристаллах ниобата лития порядка K = (2—3) ∙ 10>—9A∙см∙ (Вт)> -1.
В настоящей работе сделан обзор и обсуждена фотовольтаическая, оптическая (фоторефрактивная) и звуковая память в кристаллах ниобата лития.
Использование в голографической записи в LiNbO3: Fe дает преимущества. В этом случае запись осуществляется фотовольтаическим эффектом (ФЭ) соответствующей фотовольтаическому току.
Ниобат лития широко применяется в голографии и запоминающих устройствах благодаря своим прекрасным сегнето- и пьезоэлектрическим свойствам. Подобно тому, как магнитные материалы «запоминают» магнитное поле, сегнетоэлектрики в определенных условиях могут «запомнить» электрическое поле.